Difference between revisions of "M(32,51,12)"
(Created page with "{{blockbox |title = M(32,51,12) - <math>B_0(k(SL_2(16) \times C_2))</math> |image = |representative = <math>B_0(k(SL_2(16) \times C_2))</math> |defect = (C2)%5E5|<...") |
(No difference)
|
Revision as of 13:35, 6 December 2019
Representative: | [math]B_0(k(SL_2(16) \times C_2))[/math] |
---|---|
Defect groups: | [math](C_2)^5[/math] |
Inertial quotients: | [math]C_{15}[/math] |
[math]k(B)=[/math] | 32 |
[math]l(B)=[/math] | 15 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | See below. |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]B_0(\mathcal{O}(SL_2(16) \times C_2))[/math] |
Decomposition matrices: | See below. |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | |
[math]PI(B)=[/math] | |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | M(32,51,11) |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | |
[math]p'[/math]-index covered blocks: | |
Index [math]p[/math] covering blocks: |
Contents
Basic algebra
Other notatable representatives
Covering blocks and covered blocks
Let [math]N \triangleleft G[/math] with prime [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].
If [math]b[/math] is in M(32,51,11), then [math]B[/math] is in M(32,51,2), M(32,51,5), or M(32,51,11).
Projective indecomposable modules
Irreducible characters
All irreducible characters have height zero.
Cartan matrix
[math]\left( \begin{array}{ccc} 32 & 16 & 16 & 16 & 16 & 8 & 8 & 8 & 8 & 8 & 8 & 4 & 4 & 4 & 4 \\ 16 & 16 & 8 & 8 & 8 & 4 & 8 & 4 & 4 & 8 & 0 & 0 & 2 & 4 & 0 \\ 16 & 8 & 16 & 8 & 8 & 8 & 4 & 0 & 4 & 4 & 8 & 0 & 0 & 2 & 4 \\ 16 & 8 & 8 & 16 & 8 & 4 & 8 & 8 & 0 & 4 & 4 & 4 & 0 & 0 & 2 \\ 16 & 8 & 8 & 8 & 16 & 8 & 4 & 4 & 8 & 0 & 4 & 2 & 4 & 0 & 0 \\ 8 & 4 & 8 & 4 & 8 & 8 & 2 & 0 & 4 & 0 & 4 & 0 & 0 & 0 & 0 \\ 8 & 8 & 4 & 8 & 4 & 2 & 8 & 4 & 0 & 4 & 0 & 0 & 0 & 0 & 0 \\ 8 & 4 & 0 & 8 & 4 & 0 & 4 & 8 & 0 & 2 & 0 & 4 & 0 & 0 & 0 \\ 8 & 4 & 4 & 0 & 8 & 4 & 0 & 0 & 8 & 0 & 2 & 0 & 4 & 0 & 0 \\ 8 & 8 & 4 & 4 & 0 & 0 & 4 & 2 & 0 & 8 & 0 & 0 & 0 & 4 & 0 \\ 8 & 0 & 8 & 4 & 4 & 4 & 0 & 0 & 2 & 0 & 8 & 0 & 0 & 0 & 4 \\ 4 & 0 & 0 & 4 & 2 & 0 & 0 & 4 & 0 & 0 & 0 & 4 & 0 & 0 & 0 \\ 4 & 2 & 0 & 0 & 4 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 4 & 0 & 0 \\ 4 & 4 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 4 & 0 \\ 4 & 0 & 4 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 4 \\ \end{array} \right)[/math]
Decomposition matrix
[math]\left( \begin{array}{ccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \end{array}\right)[/math]