Difference between revisions of "M(16,14,16)"
(Created page with "{{blockbox |title = M(16,14,16) - <math>b_2(k((C_2)^4:3^{1+2}_+))</math> |image = |representative = <math>b_2(k((C_2)^4:3^{1+2}_+))</math> |defect = (C2)%5E4|<math...") |
(→Other notatable representatives) |
||
Line 41: | Line 41: | ||
== Other notatable representatives == | == Other notatable representatives == | ||
− | Any nonprincipal block of <math>(C_2)^4:3^{1+2}_-</math> | + | Any nonprincipal block of <math>(C_2)^4:3^{1+2}_-</math>. |
+ | |||
== Covering blocks and covered blocks == | == Covering blocks and covered blocks == | ||
Latest revision as of 14:40, 28 November 2019
Representative: | [math]b_2(k((C_2)^4:3^{1+2}_+))[/math] |
---|---|
Defect groups: | [math](C_2)^4[/math] |
Inertial quotients: | [math]C_3 \times C_3[/math] |
[math]k(B)=[/math] | 8 |
[math]l(B)=[/math] | 1 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | [math]\left( \begin{array}{c} 16 \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]b_2(\mathcal{O}((C_2)^4:3^{1+2}_+))[/math] |
Decomposition matrices: | [math]\left( \begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \\ 3 \end{array}\right)[/math] |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | |
[math]PI(B)=[/math] | |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | Forms a derived equivalence class |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | |
[math]p'[/math]-index covered blocks: | |
Index [math]p[/math] covering blocks: |
This Morita equivalence class contains only non-principal blocks.
Contents
Basic algebra
Other notatable representatives
Any nonprincipal block of [math](C_2)^4:3^{1+2}_-[/math].
Covering blocks and covered blocks
Let [math]N \triangleleft G[/math] with prime [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].
If [math]b[/math] is in M(16,14,16), then [math]B[/math] is in M(16,14,3) or M(16,14,16).
Projective indecomposable modules
Labelling the unique simple [math]B[/math]-module by [math]S_1[/math], the unique projective indecomposable module has Loewy structure as follows:
[math]\begin{array}{c} S_1 \\ S_1 S_1 S_1 S_1 \\ S_1 S_1 S_1 S_1 S_1 S_1 \\ S_1 S_1 S_1 S_1 \\ S_1 \\ \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.