Difference between revisions of "M(32,51,15)"
(Created page with "{{blockbox |title = M(32,51,15) - <math>B_0(k(SL_2(8) \times A_4))</math> |image = |representative = <math>B_0(k(SL_2(8) \times A_4))</math> |defect = (C2)%5E5|<ma...") |
|||
Line 37: | Line 37: | ||
Let <math>N \triangleleft G</math> with prime <math>p'</math>-index and let <math>B</math> be a block of <math>\mathcal{O} G</math> covering a block <math>b</math> of <math>\mathcal{O} N</math>. | Let <math>N \triangleleft G</math> with prime <math>p'</math>-index and let <math>B</math> be a block of <math>\mathcal{O} G</math> covering a block <math>b</math> of <math>\mathcal{O} N</math>. | ||
− | If <math>b</math> is in M(32,51,15), then <math>B</math> is in [[M(32,51,7)]], M(32,51,15), [[M(32,51,19 | + | If <math>b</math> is in M(32,51,15), then <math>B</math> is in [[M(32,51,7)]], M(32,51,15), [[M(32,51,19)]] or [[M(32,51,34)]]. |
== Projective indecomposable modules == | == Projective indecomposable modules == | ||
Line 46: | Line 46: | ||
\begin{array}{c} | \begin{array}{c} | ||
S_{1} \\ | S_{1} \\ | ||
− | S_{4} S_{6} S_{7} S_{8} S_{ | + | S_{2} S_{3} S_{5} S_{4} S_{6} \\ |
− | S_{ | + | S_{1} S_{1} S_{1} S_{1} S_{10} S_{9} S_{12} S_{11} S_{7} S_{8} S_{13} S_{14} S_{15} \\ |
− | S_{ | + | S_{3} S_{3} S_{2} S_{2} S_{2} S_{3} S_{4} S_{6} S_{5} S_{6} S_{4} S_{6} S_{4} S_{5} S_{5} S_{21} S_{19} S_{16} S_{20} S_{17} S_{18} \\ |
− | S_{ | + | S_{1} S_{1} S_{1} S_{1} S_{1} S_{1} S_{10} S_{9} S_{9} S_{10} S_{7} S_{12} S_{8} S_{8} S_{11} S_{12} S_{7} S_{11} S_{13} S_{15} S_{14} S_{15} S_{14} S_{13} \\ |
− | S_{ | + | S_{2} S_{2} S_{2} S_{3} S_{3} S_{3} S_{5} S_{4} S_{6} S_{6} S_{5} S_{4} S_{4} S_{6} S_{5} S_{21} S_{17} S_{18} S_{20} S_{19} S_{16} \\ |
− | S_{ | + | S_{1} S_{1} S_{1} S_{1} S_{12} S_{8} S_{10} S_{11} S_{9} S_{7} S_{14} S_{13} S_{15} \\ |
+ | S_{3} S_{2} S_{4} S_{6} S_{5} \\ | ||
S_{1} \\ | S_{1} \\ | ||
\end{array} | \end{array} | ||
Line 57: | Line 58: | ||
\begin{array}{c} | \begin{array}{c} | ||
S_{2} \\ | S_{2} \\ | ||
− | S_{ | + | S_{1} S_{3} S_{7} S_{10} S_{11} \\ |
− | S_{2} S_{2} S_{6} S_{7} S_{ | + | S_{2} S_{2} S_{2} S_{2} S_{9} S_{8} S_{4} S_{6} S_{5} S_{12} S_{17} S_{20} S_{21} \\ |
− | S_{ | + | S_{1} S_{3} S_{3} S_{1} S_{1} S_{3} S_{7} S_{10} S_{10} S_{10} S_{11} S_{11} S_{7} S_{11} S_{7} S_{19} S_{14} S_{13} S_{18} S_{15} S_{16} \\ |
− | S_{ | + | S_{2} S_{2} S_{2} S_{2} S_{2} S_{2} S_{6} S_{4} S_{6} S_{12} S_{12} S_{8} S_{9} S_{9} S_{5} S_{5} S_{4} S_{8} S_{20} S_{20} S_{21} S_{17} S_{17} S_{21} \\ |
− | S_{2} S_{2} S_{ | + | S_{1} S_{1} S_{1} S_{3} S_{3} S_{3} S_{7} S_{10} S_{10} S_{7} S_{10} S_{11} S_{11} S_{7} S_{11} S_{19} S_{18} S_{16} S_{15} S_{13} S_{14} \\ |
− | S_{ | + | S_{2} S_{2} S_{2} S_{2} S_{5} S_{12} S_{4} S_{6} S_{9} S_{8} S_{17} S_{20} S_{21} \\ |
+ | S_{3} S_{1} S_{10} S_{11} S_{7} \\ | ||
S_{2} \\ | S_{2} \\ | ||
\end{array} | \end{array} | ||
Line 68: | Line 70: | ||
\begin{array}{c} | \begin{array}{c} | ||
S_{3} \\ | S_{3} \\ | ||
− | S_{ | + | S_{2} S_{1} S_{12} S_{9} S_{8} \\ |
− | S_{ | + | S_{3} S_{3} S_{3} S_{3} S_{5} S_{7} S_{11} S_{10} S_{4} S_{6} S_{19} S_{18} S_{16} \\ |
− | S_{1} S_{ | + | S_{2} S_{1} S_{2} S_{2} S_{1} S_{1} S_{12} S_{12} S_{8} S_{8} S_{8} S_{9} S_{9} S_{12} S_{9} S_{14} S_{13} S_{20} S_{15} S_{17} S_{21} \\ |
− | S_{ | + | S_{3} S_{3} S_{3} S_{3} S_{3} S_{3} S_{7} S_{4} S_{10} S_{5} S_{10} S_{11} S_{5} S_{6} S_{4} S_{6} S_{11} S_{7} S_{18} S_{18} S_{16} S_{19} S_{16} S_{19} \\ |
− | S_{1} S_{ | + | S_{1} S_{2} S_{1} S_{2} S_{2} S_{1} S_{9} S_{9} S_{8} S_{12} S_{9} S_{8} S_{8} S_{12} S_{12} S_{15} S_{14} S_{17} S_{13} S_{20} S_{21} \\ |
− | S_{ | + | S_{3} S_{3} S_{3} S_{3} S_{6} S_{10} S_{5} S_{11} S_{4} S_{7} S_{16} S_{19} S_{18} \\ |
+ | S_{2} S_{1} S_{8} S_{9} S_{12} \\ | ||
S_{3} \\ | S_{3} \\ | ||
\end{array} | \end{array} | ||
Line 79: | Line 82: | ||
\begin{array}{c} | \begin{array}{c} | ||
S_{4} \\ | S_{4} \\ | ||
− | S_{ | + | S_{1} S_{9} S_{7} S_{14} \\ |
− | S_{ | + | S_{3} S_{2} S_{6} S_{4} S_{5} S_{4} S_{17} S_{19} \\ |
− | S_{ | + | S_{1} S_{1} S_{1} S_{11} S_{7} S_{8} S_{12} S_{9} S_{10} S_{13} S_{14} \\ |
− | S_{ | + | S_{2} S_{3} S_{3} S_{2} S_{6} S_{4} S_{5} S_{6} S_{4} S_{5} S_{18} S_{20} \\ |
− | S_{ | + | S_{1} S_{1} S_{1} S_{8} S_{9} S_{10} S_{7} S_{12} S_{11} S_{13} S_{14} \\ |
− | S_{1} S_{7} S_{ | + | S_{2} S_{3} S_{4} S_{4} S_{6} S_{5} S_{19} S_{17} \\ |
+ | S_{1} S_{7} S_{9} S_{14} \\ | ||
S_{4} \\ | S_{4} \\ | ||
\end{array} | \end{array} | ||
Line 95: | Line 99: | ||
\begin{array}{c} | \begin{array}{c} | ||
S_{5} \\ | S_{5} \\ | ||
− | S_{ | + | S_{1} S_{11} S_{8} S_{15} \\ |
− | S_{6} S_{5} S_{5} S_{ | + | S_{2} S_{3} S_{6} S_{5} S_{5} S_{4} S_{16} S_{21} \\ |
− | S_{ | + | S_{1} S_{1} S_{1} S_{10} S_{11} S_{8} S_{9} S_{12} S_{7} S_{14} S_{15} \\ |
− | S_{ | + | S_{2} S_{3} S_{2} S_{3} S_{5} S_{5} S_{4} S_{6} S_{4} S_{6} S_{19} S_{17} \\ |
− | S_{ | + | S_{1} S_{1} S_{1} S_{12} S_{8} S_{9} S_{11} S_{7} S_{10} S_{15} S_{14} \\ |
− | S_{ | + | S_{3} S_{2} S_{5} S_{4} S_{5} S_{6} S_{21} S_{16} \\ |
+ | S_{1} S_{11} S_{8} S_{15} \\ | ||
S_{5} \\ | S_{5} \\ | ||
\end{array} | \end{array} | ||
Line 106: | Line 111: | ||
\begin{array}{c} | \begin{array}{c} | ||
S_{6} \\ | S_{6} \\ | ||
− | S_{ | + | S_{1} S_{12} S_{10} S_{13} \\ |
− | S_{3} S_{ | + | S_{3} S_{2} S_{4} S_{6} S_{6} S_{5} S_{20} S_{18} \\ |
− | S_{ | + | S_{1} S_{1} S_{1} S_{11} S_{7} S_{12} S_{9} S_{8} S_{10} S_{15} S_{13} \\ |
− | S_{ | + | S_{2} S_{3} S_{2} S_{3} S_{4} S_{4} S_{6} S_{6} S_{5} S_{5} S_{16} S_{21} \\ |
− | S_{ | + | S_{1} S_{1} S_{1} S_{7} S_{8} S_{11} S_{12} S_{10} S_{9} S_{15} S_{13} \\ |
− | + | S_{3} S_{2} S_{6} S_{6} S_{5} S_{4} S_{20} S_{18} \\ | |
+ | S_{1} S_{10} S_{12} S_{13} \\ | ||
S_{6} \\ | S_{6} \\ | ||
\end{array} | \end{array} | ||
Line 117: | Line 123: | ||
\begin{array}{c} | \begin{array}{c} | ||
S_{7} \\ | S_{7} \\ | ||
− | + | S_{2} S_{9} S_{4} S_{17} \\ | |
− | S_{ | + | S_{3} S_{1} S_{7} S_{10} S_{11} S_{7} S_{19} S_{14} \\ |
− | S_{ | + | S_{2} S_{2} S_{2} S_{12} S_{6} S_{5} S_{8} S_{9} S_{4} S_{17} S_{20} \\ |
− | S_{ | + | S_{3} S_{3} S_{1} S_{1} S_{10} S_{7} S_{10} S_{11} S_{7} S_{11} S_{18} S_{13} \\ |
− | S_{ | + | S_{2} S_{2} S_{2} S_{4} S_{8} S_{5} S_{12} S_{9} S_{6} S_{20} S_{17} \\ |
− | S_{ | + | S_{3} S_{1} S_{11} S_{7} S_{10} S_{7} S_{14} S_{19} \\ |
+ | S_{2} S_{9} S_{4} S_{17} \\ | ||
S_{7} \\ | S_{7} \\ | ||
\end{array} | \end{array} | ||
Line 128: | Line 135: | ||
\begin{array}{c} | \begin{array}{c} | ||
S_{8} \\ | S_{8} \\ | ||
− | S_{1} S_{ | + | S_{3} S_{11} S_{5} S_{16} \\ |
− | S_{ | + | S_{1} S_{2} S_{9} S_{12} S_{8} S_{8} S_{15} S_{21} \\ |
− | S_{1} S_{ | + | S_{3} S_{3} S_{3} S_{10} S_{7} S_{11} S_{4} S_{5} S_{6} S_{19} S_{16} \\ |
− | S_{ | + | S_{1} S_{1} S_{2} S_{2} S_{12} S_{9} S_{8} S_{8} S_{12} S_{9} S_{14} S_{17} \\ |
− | S_{2} S_{ | + | S_{3} S_{3} S_{3} S_{7} S_{10} S_{5} S_{4} S_{11} S_{6} S_{16} S_{19} \\ |
− | S_{ | + | S_{1} S_{2} S_{9} S_{8} S_{8} S_{12} S_{15} S_{21} \\ |
+ | S_{3} S_{5} S_{11} S_{16} \\ | ||
S_{8} \\ | S_{8} \\ | ||
\end{array} | \end{array} | ||
Line 145: | Line 153: | ||
\begin{array}{c} | \begin{array}{c} | ||
S_{9} \\ | S_{9} \\ | ||
− | S_{1} S_{ | + | S_{3} S_{4} S_{7} S_{19} \\ |
− | S_{7} S_{ | + | S_{2} S_{1} S_{12} S_{9} S_{8} S_{9} S_{17} S_{14} \\ |
− | S_{ | + | S_{3} S_{3} S_{3} S_{5} S_{7} S_{4} S_{11} S_{10} S_{6} S_{19} S_{18} \\ |
− | S_{ | + | S_{1} S_{2} S_{2} S_{1} S_{9} S_{8} S_{8} S_{9} S_{12} S_{12} S_{13} S_{20} \\ |
− | S_{ | + | S_{3} S_{3} S_{3} S_{6} S_{4} S_{11} S_{10} S_{5} S_{7} S_{19} S_{18} \\ |
− | S_{ | + | S_{1} S_{2} S_{9} S_{12} S_{8} S_{9} S_{17} S_{14} \\ |
+ | S_{3} S_{7} S_{4} S_{19} \\ | ||
S_{9} \\ | S_{9} \\ | ||
\end{array} | \end{array} | ||
Line 156: | Line 165: | ||
\begin{array}{c} | \begin{array}{c} | ||
S_{10} \\ | S_{10} \\ | ||
− | S_{2} S_{12} S_{ | + | S_{2} S_{12} S_{6} S_{20} \\ |
− | S_{1} S_{ | + | S_{1} S_{3} S_{11} S_{7} S_{10} S_{10} S_{18} S_{13} \\ |
− | S_{ | + | S_{2} S_{2} S_{2} S_{9} S_{5} S_{6} S_{4} S_{12} S_{8} S_{21} S_{20} \\ |
− | S_{1} S_{ | + | S_{1} S_{1} S_{3} S_{3} S_{10} S_{11} S_{7} S_{7} S_{10} S_{11} S_{16} S_{15} \\ |
− | S_{6} S_{ | + | S_{2} S_{2} S_{2} S_{5} S_{4} S_{8} S_{6} S_{9} S_{12} S_{21} S_{20} \\ |
− | S_{2} S_{ | + | S_{3} S_{1} S_{10} S_{7} S_{11} S_{10} S_{18} S_{13} \\ |
+ | S_{2} S_{12} S_{6} S_{20} \\ | ||
S_{10} \\ | S_{10} \\ | ||
\end{array} | \end{array} | ||
Line 167: | Line 177: | ||
\begin{array}{c} | \begin{array}{c} | ||
S_{11} \\ | S_{11} \\ | ||
− | S_{ | + | S_{2} S_{5} S_{8} S_{21} \\ |
− | S_{ | + | S_{3} S_{1} S_{10} S_{11} S_{7} S_{11} S_{16} S_{15} \\ |
− | S_{ | + | S_{2} S_{2} S_{2} S_{4} S_{12} S_{6} S_{5} S_{8} S_{9} S_{21} S_{17} \\ |
− | S_{ | + | S_{3} S_{3} S_{1} S_{1} S_{7} S_{11} S_{10} S_{10} S_{7} S_{11} S_{19} S_{14} \\ |
− | S_{ | + | S_{2} S_{2} S_{2} S_{9} S_{4} S_{12} S_{8} S_{6} S_{5} S_{17} S_{21} \\ |
− | S_{ | + | S_{1} S_{3} S_{10} S_{11} S_{11} S_{7} S_{15} S_{16} \\ |
+ | S_{2} S_{8} S_{5} S_{21} \\ | ||
S_{11} \\ | S_{11} \\ | ||
\end{array} | \end{array} | ||
Line 178: | Line 189: | ||
\begin{array}{c} | \begin{array}{c} | ||
S_{12} \\ | S_{12} \\ | ||
− | S_{ | + | S_{3} S_{10} S_{6} S_{18} \\ |
− | S_{ | + | S_{2} S_{1} S_{12} S_{8} S_{9} S_{12} S_{20} S_{13} \\ |
− | S_{ | + | S_{3} S_{3} S_{3} S_{5} S_{10} S_{11} S_{4} S_{6} S_{7} S_{18} S_{16} \\ |
− | S_{3} S_{ | + | S_{1} S_{1} S_{2} S_{2} S_{8} S_{9} S_{12} S_{12} S_{9} S_{8} S_{21} S_{15} \\ |
− | S_{ | + | S_{3} S_{3} S_{3} S_{6} S_{10} S_{4} S_{7} S_{11} S_{5} S_{16} S_{18} \\ |
− | S_{ | + | S_{2} S_{1} S_{12} S_{12} S_{9} S_{8} S_{20} S_{13} \\ |
+ | S_{3} S_{10} S_{6} S_{18} \\ | ||
S_{12} \\ | S_{12} \\ | ||
\end{array} | \end{array} | ||
Line 195: | Line 207: | ||
\begin{array}{c} | \begin{array}{c} | ||
S_{13} \\ | S_{13} \\ | ||
− | S_{6} S_{20 | + | S_{6} S_{20} S_{18} \\ |
− | S_{ | + | S_{1} S_{10} S_{12} S_{13} \\ |
− | S_{4} S_{6} S_{ | + | S_{2} S_{3} S_{4} S_{6} \\ |
− | + | S_{1} S_{1} S_{7} S_{9} \\ | |
− | + | S_{2} S_{3} S_{4} S_{6} \\ | |
− | S_{6} S_{ | + | S_{1} S_{12} S_{10} S_{13} \\ |
+ | S_{6} S_{18} S_{20} \\ | ||
S_{13} \\ | S_{13} \\ | ||
\end{array} | \end{array} | ||
Line 206: | Line 219: | ||
\begin{array}{c} | \begin{array}{c} | ||
S_{14} \\ | S_{14} \\ | ||
− | S_{ | + | S_{4} S_{19} S_{17} \\ |
− | + | S_{1} S_{9} S_{7} S_{14} \\ | |
− | S_{ | + | S_{2} S_{3} S_{5} S_{4} \\ |
− | S_{ | + | S_{1} S_{1} S_{11} S_{8} \\ |
− | S_{ | + | S_{2} S_{3} S_{5} S_{4} \\ |
− | S_{ | + | S_{1} S_{9} S_{7} S_{14} \\ |
+ | S_{4} S_{19} S_{17} \\ | ||
S_{14} \\ | S_{14} \\ | ||
\end{array} | \end{array} | ||
Line 217: | Line 231: | ||
\begin{array}{c} | \begin{array}{c} | ||
S_{15} \\ | S_{15} \\ | ||
− | S_{ | + | S_{5} S_{21} S_{16} \\ |
− | S_{ | + | S_{1} S_{11} S_{8} S_{15} \\ |
− | S_{2} S_{ | + | S_{2} S_{3} S_{5} S_{6} \\ |
− | S_{ | + | S_{1} S_{1} S_{10} S_{12} \\ |
− | S_{1} S_{ | + | S_{2} S_{3} S_{5} S_{6} \\ |
− | S_{ | + | S_{1} S_{8} S_{11} S_{15} \\ |
+ | S_{5} S_{16} S_{21} \\ | ||
S_{15} \\ | S_{15} \\ | ||
\end{array} | \end{array} | ||
Line 228: | Line 243: | ||
\begin{array}{c} | \begin{array}{c} | ||
S_{16} \\ | S_{16} \\ | ||
− | S_{ | + | S_{8} S_{15} S_{21} \\ |
− | S_{ | + | S_{3} S_{5} S_{11} S_{16} \\ |
− | S_{ | + | S_{1} S_{2} S_{12} S_{8} \\ |
− | S_{ | + | S_{3} S_{3} S_{10} S_{6} \\ |
− | S_{ | + | S_{2} S_{1} S_{8} S_{12} \\ |
− | S_{ | + | S_{3} S_{11} S_{5} S_{16} \\ |
+ | S_{8} S_{15} S_{21} \\ | ||
S_{16} \\ | S_{16} \\ | ||
\end{array} | \end{array} | ||
Line 245: | Line 261: | ||
\begin{array}{c} | \begin{array}{c} | ||
S_{17} \\ | S_{17} \\ | ||
− | S_{ | + | S_{7} S_{19} S_{14} \\ |
− | S_{ | + | S_{2} S_{4} S_{9} S_{17} \\ |
− | S_{ | + | S_{3} S_{1} S_{11} S_{7} \\ |
− | S_{ | + | S_{2} S_{2} S_{5} S_{8} \\ |
− | S_{2} S_{ | + | S_{1} S_{3} S_{11} S_{7} \\ |
− | S_{ | + | S_{2} S_{4} S_{9} S_{17} \\ |
+ | S_{7} S_{14} S_{19} \\ | ||
S_{17} \\ | S_{17} \\ | ||
\end{array} | \end{array} | ||
Line 256: | Line 273: | ||
\begin{array}{c} | \begin{array}{c} | ||
S_{18} \\ | S_{18} \\ | ||
− | S_{ | + | S_{12} S_{13} S_{20} \\ |
− | + | S_{3} S_{10} S_{6} S_{18} \\ | |
− | S_{ | + | S_{1} S_{2} S_{12} S_{9} \\ |
− | S_{ | + | S_{3} S_{3} S_{7} S_{4} \\ |
− | S_{ | + | S_{1} S_{2} S_{12} S_{9} \\ |
− | S_{ | + | S_{3} S_{6} S_{10} S_{18} \\ |
+ | S_{12} S_{13} S_{20} \\ | ||
S_{18} \\ | S_{18} \\ | ||
\end{array} | \end{array} | ||
Line 267: | Line 285: | ||
\begin{array}{c} | \begin{array}{c} | ||
S_{19} \\ | S_{19} \\ | ||
− | S_{ | + | S_{9} S_{14} S_{17} \\ |
− | + | S_{3} S_{7} S_{4} S_{19} \\ | |
− | S_{1} S_{ | + | S_{1} S_{2} S_{9} S_{8} \\ |
− | S_{ | + | S_{3} S_{3} S_{5} S_{11} \\ |
− | S_{ | + | S_{1} S_{2} S_{9} S_{8} \\ |
− | S_{ | + | S_{3} S_{7} S_{4} S_{19} \\ |
+ | S_{9} S_{14} S_{17} \\ | ||
S_{19} \\ | S_{19} \\ | ||
\end{array} | \end{array} | ||
Line 278: | Line 297: | ||
\begin{array}{c} | \begin{array}{c} | ||
S_{20} \\ | S_{20} \\ | ||
− | S_{ | + | S_{10} S_{18} S_{13} \\ |
− | S_{2} S_{ | + | S_{2} S_{12} S_{6} S_{20} \\ |
− | S_{ | + | S_{1} S_{3} S_{10} S_{7} \\ |
− | + | S_{2} S_{2} S_{9} S_{4} \\ | |
− | S_{ | + | S_{3} S_{1} S_{7} S_{10} \\ |
− | S_{ | + | S_{2} S_{6} S_{12} S_{20} \\ |
+ | S_{10} S_{18} S_{13} \\ | ||
S_{20} \\ | S_{20} \\ | ||
\end{array} | \end{array} | ||
Line 289: | Line 309: | ||
\begin{array}{c} | \begin{array}{c} | ||
S_{21} \\ | S_{21} \\ | ||
− | S_{ | + | S_{11} S_{16} S_{15} \\ |
− | S_{2 | + | S_{2} S_{5} S_{8} S_{21} \\ |
− | S_{1} S_{3} S_{ | + | S_{1} S_{3} S_{11} S_{10} \\ |
− | S_{ | + | S_{2} S_{2} S_{12} S_{6} \\ |
− | S_{ | + | S_{3} S_{1} S_{11} S_{10} \\ |
− | S_{ | + | S_{2} S_{8} S_{5} S_{21} \\ |
+ | S_{11} S_{16} S_{15} \\ | ||
S_{21} \\ | S_{21} \\ | ||
\end{array} | \end{array} | ||
Line 306: | Line 327: | ||
== Cartan matrix == | == Cartan matrix == | ||
<math>\left( \begin{array}{ccccccccccccccccccccc} | <math>\left( \begin{array}{ccccccccccccccccccccc} | ||
− | 8 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & | + | 16 & 8 & 8 & 8 & 8 & 8 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 2 & 2 & 2 & 2 & 2 & 2 \\ |
− | + | 8 & 16 & 8 & 4 & 4 & 4 & 4 & 8 & 8 & 4 & 4 & 8 & 2 & 2 & 2 & 2 & 2 & 4 & 4 & 2 & 4 \\ | |
− | + | 8 & 8 & 16 & 4 & 4 & 4 & 8 & 4 & 4 & 8 & 8 & 4 & 2 & 2 & 2 & 4 & 4 & 2 & 2 & 4 & 2 \\ | |
− | + | 8 & 4 & 4 & 8 & 4 & 4 & 4 & 2 & 2 & 2 & 2 & 4 & 2 & 4 & 0 & 0 & 2 & 1 & 2 & 1 & 0 \\ | |
− | + | 8 & 4 & 4 & 4 & 8 & 4 & 2 & 4 & 2 & 4 & 2 & 2 & 0 & 2 & 4 & 2 & 1 & 0 & 1 & 0 & 2 \\ | |
− | + | 8 & 4 & 4 & 4 & 4 & 8 & 2 & 2 & 4 & 2 & 4 & 2 & 4 & 0 & 2 & 1 & 0 & 2 & 0 & 2 & 1 \\ | |
− | 4 & 4 & | + | 4 & 4 & 8 & 4 & 2 & 2 & 8 & 2 & 2 & 4 & 4 & 4 & 1 & 2 & 0 & 0 & 4 & 1 & 2 & 2 & 0 \\ |
− | 4 & 2 & | + | 4 & 8 & 4 & 2 & 4 & 2 & 2 & 8 & 4 & 4 & 2 & 4 & 0 & 1 & 2 & 2 & 1 & 0 & 2 & 0 & 4 \\ |
− | 4 & 2 & 2 & | + | 4 & 8 & 4 & 2 & 2 & 4 & 2 & 4 & 8 & 2 & 4 & 4 & 2 & 0 & 1 & 1 & 0 & 4 & 0 & 2 & 2 \\ |
− | + | 4 & 4 & 8 & 2 & 4 & 2 & 4 & 4 & 2 & 8 & 4 & 2 & 0 & 1 & 2 & 4 & 2 & 0 & 1 & 0 & 2 \\ | |
− | + | 4 & 4 & 8 & 2 & 2 & 4 & 4 & 2 & 4 & 4 & 8 & 2 & 2 & 0 & 1 & 2 & 0 & 2 & 0 & 4 & 1 \\ | |
− | + | 4 & 8 & 4 & 4 & 2 & 2 & 4 & 4 & 4 & 2 & 2 & 8 & 1 & 2 & 0 & 0 & 2 & 2 & 4 & 1 & 0 \\ | |
− | + | 4 & 2 & 2 & 2 & 0 & 4 & 1 & 0 & 2 & 0 & 2 & 1 & 4 & 0 & 0 & 0 & 0 & 2 & 0 & 2 & 0 \\ | |
− | + | 4 & 2 & 2 & 4 & 2 & 0 & 2 & 1 & 0 & 1 & 0 & 2 & 0 & 4 & 0 & 0 & 2 & 0 & 2 & 0 & 0 \\ | |
− | + | 4 & 2 & 2 & 0 & 4 & 2 & 0 & 2 & 1 & 2 & 1 & 0 & 0 & 0 & 4 & 2 & 0 & 0 & 0 & 0 & 2 \\ | |
− | 2 & 2 & | + | 2 & 2 & 4 & 0 & 2 & 1 & 0 & 2 & 1 & 4 & 2 & 0 & 0 & 0 & 2 & 4 & 0 & 0 & 0 & 0 & 2 \\ |
− | 2 & 4 & 2 & | + | 2 & 2 & 4 & 2 & 1 & 0 & 4 & 1 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 0 & 4 & 0 & 2 & 0 & 0 \\ |
− | 2 & | + | 2 & 4 & 2 & 1 & 0 & 2 & 1 & 0 & 4 & 0 & 2 & 2 & 2 & 0 & 0 & 0 & 0 & 4 & 0 & 2 & 0 \\ |
− | + | 2 & 4 & 2 & 2 & 1 & 0 & 2 & 2 & 0 & 1 & 0 & 4 & 0 & 2 & 0 & 0 & 2 & 0 & 4 & 0 & 0 \\ | |
− | 2 & 2 & | + | 2 & 2 & 4 & 1 & 0 & 2 & 2 & 0 & 2 & 0 & 4 & 1 & 2 & 0 & 0 & 0 & 0 & 2 & 0 & 4 & 0 \\ |
− | 2 & 2 & 2 & | + | 2 & 4 & 2 & 0 & 2 & 1 & 0 & 4 & 2 & 2 & 1 & 0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 4 |
\end{array}\right)</math> | \end{array}\right)</math> | ||
Line 333: | Line 354: | ||
<math>\left( \begin{array}{ccccccccccccccccccccc} | <math>\left( \begin{array}{ccccccccccccccccccccc} | ||
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ | 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ | ||
− | |||
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ | 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ | ||
− | |||
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ | 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ | ||
− | + | 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ | |
− | + | 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ | |
− | + | 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ | |
− | 1 & 0 & 0 & 0 & 0 & | + | 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
− | + | 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ | |
− | + | 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ | |
− | 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 | + | 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ |
− | 0 & 0 & 0 & 0 & 0 & 0 | + | 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
− | 0 & 0 & | + | 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ |
− | + | 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ | |
− | 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & | + | 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ |
− | 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & | + | 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ |
− | 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 | + | 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ |
− | + | 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ | |
− | + | 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ | |
− | + | 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ | |
− | + | 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ | |
− | 0 & | + | 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ |
− | 0 & 0 & | + | 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ |
− | 0 & 1 & 0 & 0 & 0 & 0 & | + | 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ |
− | 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 | + | 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ |
− | 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & | + | 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ |
− | 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 | + | 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
− | 1 & 1 & | + | 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ |
− | 1 & 1 & 1 & 1 & | + | 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ |
− | 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & | + | 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ |
− | 1 & 1 & 1 & | + | 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ |
+ | 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ | ||
+ | 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 | ||
\end{array}\right)</math> | \end{array}\right)</math> | ||
[[(C2)%5E5|Back to <math>(C_2)^5</math>]] | [[(C2)%5E5|Back to <math>(C_2)^5</math>]] |
Revision as of 15:09, 8 December 2019
Representative: | [math]B_0(k(SL_2(8) \times A_4))[/math] |
---|---|
Defect groups: | [math](C_2)^5[/math] |
Inertial quotients: | [math]C_{21}[/math] |
[math]k(B)=[/math] | 32 |
[math]l(B)=[/math] | 21 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | See below. |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]B_0(\mathcal{O} (SL_2(8) \times A_4))[/math] |
Decomposition matrices: | See below. |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | |
[math]PI(B)=[/math] | |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | M(32,51,13), M(32,51,14), M(32,51,16) |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | |
[math]p'[/math]-index covered blocks: | |
Index [math]p[/math] covering blocks: |
Contents
Basic algebra
Other notatable representatives
Covering blocks and covered blocks
Let [math]N \triangleleft G[/math] with prime [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].
If [math]b[/math] is in M(32,51,15), then [math]B[/math] is in M(32,51,7), M(32,51,15), M(32,51,19) or M(32,51,34).
Projective indecomposable modules
Labelling the simple [math]B[/math]-modules by [math]S_1, \dots, S_{21}[/math], the projective indecomposable modules have Loewy structure as follows:
[math]\begin{array}{cccc} \begin{array}{c} S_{1} \\ S_{2} S_{3} S_{5} S_{4} S_{6} \\ S_{1} S_{1} S_{1} S_{1} S_{10} S_{9} S_{12} S_{11} S_{7} S_{8} S_{13} S_{14} S_{15} \\ S_{3} S_{3} S_{2} S_{2} S_{2} S_{3} S_{4} S_{6} S_{5} S_{6} S_{4} S_{6} S_{4} S_{5} S_{5} S_{21} S_{19} S_{16} S_{20} S_{17} S_{18} \\ S_{1} S_{1} S_{1} S_{1} S_{1} S_{1} S_{10} S_{9} S_{9} S_{10} S_{7} S_{12} S_{8} S_{8} S_{11} S_{12} S_{7} S_{11} S_{13} S_{15} S_{14} S_{15} S_{14} S_{13} \\ S_{2} S_{2} S_{2} S_{3} S_{3} S_{3} S_{5} S_{4} S_{6} S_{6} S_{5} S_{4} S_{4} S_{6} S_{5} S_{21} S_{17} S_{18} S_{20} S_{19} S_{16} \\ S_{1} S_{1} S_{1} S_{1} S_{12} S_{8} S_{10} S_{11} S_{9} S_{7} S_{14} S_{13} S_{15} \\ S_{3} S_{2} S_{4} S_{6} S_{5} \\ S_{1} \\ \end{array} & \begin{array}{c} S_{2} \\ S_{1} S_{3} S_{7} S_{10} S_{11} \\ S_{2} S_{2} S_{2} S_{2} S_{9} S_{8} S_{4} S_{6} S_{5} S_{12} S_{17} S_{20} S_{21} \\ S_{1} S_{3} S_{3} S_{1} S_{1} S_{3} S_{7} S_{10} S_{10} S_{10} S_{11} S_{11} S_{7} S_{11} S_{7} S_{19} S_{14} S_{13} S_{18} S_{15} S_{16} \\ S_{2} S_{2} S_{2} S_{2} S_{2} S_{2} S_{6} S_{4} S_{6} S_{12} S_{12} S_{8} S_{9} S_{9} S_{5} S_{5} S_{4} S_{8} S_{20} S_{20} S_{21} S_{17} S_{17} S_{21} \\ S_{1} S_{1} S_{1} S_{3} S_{3} S_{3} S_{7} S_{10} S_{10} S_{7} S_{10} S_{11} S_{11} S_{7} S_{11} S_{19} S_{18} S_{16} S_{15} S_{13} S_{14} \\ S_{2} S_{2} S_{2} S_{2} S_{5} S_{12} S_{4} S_{6} S_{9} S_{8} S_{17} S_{20} S_{21} \\ S_{3} S_{1} S_{10} S_{11} S_{7} \\ S_{2} \\ \end{array} & \begin{array}{c} S_{3} \\ S_{2} S_{1} S_{12} S_{9} S_{8} \\ S_{3} S_{3} S_{3} S_{3} S_{5} S_{7} S_{11} S_{10} S_{4} S_{6} S_{19} S_{18} S_{16} \\ S_{2} S_{1} S_{2} S_{2} S_{1} S_{1} S_{12} S_{12} S_{8} S_{8} S_{8} S_{9} S_{9} S_{12} S_{9} S_{14} S_{13} S_{20} S_{15} S_{17} S_{21} \\ S_{3} S_{3} S_{3} S_{3} S_{3} S_{3} S_{7} S_{4} S_{10} S_{5} S_{10} S_{11} S_{5} S_{6} S_{4} S_{6} S_{11} S_{7} S_{18} S_{18} S_{16} S_{19} S_{16} S_{19} \\ S_{1} S_{2} S_{1} S_{2} S_{2} S_{1} S_{9} S_{9} S_{8} S_{12} S_{9} S_{8} S_{8} S_{12} S_{12} S_{15} S_{14} S_{17} S_{13} S_{20} S_{21} \\ S_{3} S_{3} S_{3} S_{3} S_{6} S_{10} S_{5} S_{11} S_{4} S_{7} S_{16} S_{19} S_{18} \\ S_{2} S_{1} S_{8} S_{9} S_{12} \\ S_{3} \\ \end{array} & \begin{array}{c} S_{4} \\ S_{1} S_{9} S_{7} S_{14} \\ S_{3} S_{2} S_{6} S_{4} S_{5} S_{4} S_{17} S_{19} \\ S_{1} S_{1} S_{1} S_{11} S_{7} S_{8} S_{12} S_{9} S_{10} S_{13} S_{14} \\ S_{2} S_{3} S_{3} S_{2} S_{6} S_{4} S_{5} S_{6} S_{4} S_{5} S_{18} S_{20} \\ S_{1} S_{1} S_{1} S_{8} S_{9} S_{10} S_{7} S_{12} S_{11} S_{13} S_{14} \\ S_{2} S_{3} S_{4} S_{4} S_{6} S_{5} S_{19} S_{17} \\ S_{1} S_{7} S_{9} S_{14} \\ S_{4} \\ \end{array} \end{array}[/math]
[math] \begin{array}{cccc} \begin{array}{c} S_{5} \\ S_{1} S_{11} S_{8} S_{15} \\ S_{2} S_{3} S_{6} S_{5} S_{5} S_{4} S_{16} S_{21} \\ S_{1} S_{1} S_{1} S_{10} S_{11} S_{8} S_{9} S_{12} S_{7} S_{14} S_{15} \\ S_{2} S_{3} S_{2} S_{3} S_{5} S_{5} S_{4} S_{6} S_{4} S_{6} S_{19} S_{17} \\ S_{1} S_{1} S_{1} S_{12} S_{8} S_{9} S_{11} S_{7} S_{10} S_{15} S_{14} \\ S_{3} S_{2} S_{5} S_{4} S_{5} S_{6} S_{21} S_{16} \\ S_{1} S_{11} S_{8} S_{15} \\ S_{5} \\ \end{array} & \begin{array}{c} S_{6} \\ S_{1} S_{12} S_{10} S_{13} \\ S_{3} S_{2} S_{4} S_{6} S_{6} S_{5} S_{20} S_{18} \\ S_{1} S_{1} S_{1} S_{11} S_{7} S_{12} S_{9} S_{8} S_{10} S_{15} S_{13} \\ S_{2} S_{3} S_{2} S_{3} S_{4} S_{4} S_{6} S_{6} S_{5} S_{5} S_{16} S_{21} \\ S_{1} S_{1} S_{1} S_{7} S_{8} S_{11} S_{12} S_{10} S_{9} S_{15} S_{13} \\ S_{3} S_{2} S_{6} S_{6} S_{5} S_{4} S_{20} S_{18} \\ S_{1} S_{10} S_{12} S_{13} \\ S_{6} \\ \end{array} & \begin{array}{c} S_{7} \\ S_{2} S_{9} S_{4} S_{17} \\ S_{3} S_{1} S_{7} S_{10} S_{11} S_{7} S_{19} S_{14} \\ S_{2} S_{2} S_{2} S_{12} S_{6} S_{5} S_{8} S_{9} S_{4} S_{17} S_{20} \\ S_{3} S_{3} S_{1} S_{1} S_{10} S_{7} S_{10} S_{11} S_{7} S_{11} S_{18} S_{13} \\ S_{2} S_{2} S_{2} S_{4} S_{8} S_{5} S_{12} S_{9} S_{6} S_{20} S_{17} \\ S_{3} S_{1} S_{11} S_{7} S_{10} S_{7} S_{14} S_{19} \\ S_{2} S_{9} S_{4} S_{17} \\ S_{7} \\ \end{array} & \begin{array}{c} S_{8} \\ S_{3} S_{11} S_{5} S_{16} \\ S_{1} S_{2} S_{9} S_{12} S_{8} S_{8} S_{15} S_{21} \\ S_{3} S_{3} S_{3} S_{10} S_{7} S_{11} S_{4} S_{5} S_{6} S_{19} S_{16} \\ S_{1} S_{1} S_{2} S_{2} S_{12} S_{9} S_{8} S_{8} S_{12} S_{9} S_{14} S_{17} \\ S_{3} S_{3} S_{3} S_{7} S_{10} S_{5} S_{4} S_{11} S_{6} S_{16} S_{19} \\ S_{1} S_{2} S_{9} S_{8} S_{8} S_{12} S_{15} S_{21} \\ S_{3} S_{5} S_{11} S_{16} \\ S_{8} \\ \end{array} \end{array} [/math]
[math] \begin{array}{cccc} \begin{array}{c} S_{9} \\ S_{3} S_{4} S_{7} S_{19} \\ S_{2} S_{1} S_{12} S_{9} S_{8} S_{9} S_{17} S_{14} \\ S_{3} S_{3} S_{3} S_{5} S_{7} S_{4} S_{11} S_{10} S_{6} S_{19} S_{18} \\ S_{1} S_{2} S_{2} S_{1} S_{9} S_{8} S_{8} S_{9} S_{12} S_{12} S_{13} S_{20} \\ S_{3} S_{3} S_{3} S_{6} S_{4} S_{11} S_{10} S_{5} S_{7} S_{19} S_{18} \\ S_{1} S_{2} S_{9} S_{12} S_{8} S_{9} S_{17} S_{14} \\ S_{3} S_{7} S_{4} S_{19} \\ S_{9} \\ \end{array} & \begin{array}{c} S_{10} \\ S_{2} S_{12} S_{6} S_{20} \\ S_{1} S_{3} S_{11} S_{7} S_{10} S_{10} S_{18} S_{13} \\ S_{2} S_{2} S_{2} S_{9} S_{5} S_{6} S_{4} S_{12} S_{8} S_{21} S_{20} \\ S_{1} S_{1} S_{3} S_{3} S_{10} S_{11} S_{7} S_{7} S_{10} S_{11} S_{16} S_{15} \\ S_{2} S_{2} S_{2} S_{5} S_{4} S_{8} S_{6} S_{9} S_{12} S_{21} S_{20} \\ S_{3} S_{1} S_{10} S_{7} S_{11} S_{10} S_{18} S_{13} \\ S_{2} S_{12} S_{6} S_{20} \\ S_{10} \\ \end{array} & \begin{array}{c} S_{11} \\ S_{2} S_{5} S_{8} S_{21} \\ S_{3} S_{1} S_{10} S_{11} S_{7} S_{11} S_{16} S_{15} \\ S_{2} S_{2} S_{2} S_{4} S_{12} S_{6} S_{5} S_{8} S_{9} S_{21} S_{17} \\ S_{3} S_{3} S_{1} S_{1} S_{7} S_{11} S_{10} S_{10} S_{7} S_{11} S_{19} S_{14} \\ S_{2} S_{2} S_{2} S_{9} S_{4} S_{12} S_{8} S_{6} S_{5} S_{17} S_{21} \\ S_{1} S_{3} S_{10} S_{11} S_{11} S_{7} S_{15} S_{16} \\ S_{2} S_{8} S_{5} S_{21} \\ S_{11} \\ \end{array} & \begin{array}{c} S_{12} \\ S_{3} S_{10} S_{6} S_{18} \\ S_{2} S_{1} S_{12} S_{8} S_{9} S_{12} S_{20} S_{13} \\ S_{3} S_{3} S_{3} S_{5} S_{10} S_{11} S_{4} S_{6} S_{7} S_{18} S_{16} \\ S_{1} S_{1} S_{2} S_{2} S_{8} S_{9} S_{12} S_{12} S_{9} S_{8} S_{21} S_{15} \\ S_{3} S_{3} S_{3} S_{6} S_{10} S_{4} S_{7} S_{11} S_{5} S_{16} S_{18} \\ S_{2} S_{1} S_{12} S_{12} S_{9} S_{8} S_{20} S_{13} \\ S_{3} S_{10} S_{6} S_{18} \\ S_{12} \\ \end{array} \end{array} [/math]
[math] \begin{array}{cccc} \begin{array}{c} S_{13} \\ S_{6} S_{20} S_{18} \\ S_{1} S_{10} S_{12} S_{13} \\ S_{2} S_{3} S_{4} S_{6} \\ S_{1} S_{1} S_{7} S_{9} \\ S_{2} S_{3} S_{4} S_{6} \\ S_{1} S_{12} S_{10} S_{13} \\ S_{6} S_{18} S_{20} \\ S_{13} \\ \end{array} & \begin{array}{c} S_{14} \\ S_{4} S_{19} S_{17} \\ S_{1} S_{9} S_{7} S_{14} \\ S_{2} S_{3} S_{5} S_{4} \\ S_{1} S_{1} S_{11} S_{8} \\ S_{2} S_{3} S_{5} S_{4} \\ S_{1} S_{9} S_{7} S_{14} \\ S_{4} S_{19} S_{17} \\ S_{14} \\ \end{array} & \begin{array}{c} S_{15} \\ S_{5} S_{21} S_{16} \\ S_{1} S_{11} S_{8} S_{15} \\ S_{2} S_{3} S_{5} S_{6} \\ S_{1} S_{1} S_{10} S_{12} \\ S_{2} S_{3} S_{5} S_{6} \\ S_{1} S_{8} S_{11} S_{15} \\ S_{5} S_{16} S_{21} \\ S_{15} \\ \end{array} & \begin{array}{c} S_{16} \\ S_{8} S_{15} S_{21} \\ S_{3} S_{5} S_{11} S_{16} \\ S_{1} S_{2} S_{12} S_{8} \\ S_{3} S_{3} S_{10} S_{6} \\ S_{2} S_{1} S_{8} S_{12} \\ S_{3} S_{11} S_{5} S_{16} \\ S_{8} S_{15} S_{21} \\ S_{16} \\ \end{array} \end{array} [/math]
[math] \begin{array}{ccccc} \begin{array}{c} S_{17} \\ S_{7} S_{19} S_{14} \\ S_{2} S_{4} S_{9} S_{17} \\ S_{3} S_{1} S_{11} S_{7} \\ S_{2} S_{2} S_{5} S_{8} \\ S_{1} S_{3} S_{11} S_{7} \\ S_{2} S_{4} S_{9} S_{17} \\ S_{7} S_{14} S_{19} \\ S_{17} \\ \end{array} & \begin{array}{c} S_{18} \\ S_{12} S_{13} S_{20} \\ S_{3} S_{10} S_{6} S_{18} \\ S_{1} S_{2} S_{12} S_{9} \\ S_{3} S_{3} S_{7} S_{4} \\ S_{1} S_{2} S_{12} S_{9} \\ S_{3} S_{6} S_{10} S_{18} \\ S_{12} S_{13} S_{20} \\ S_{18} \\ \end{array} & \begin{array}{c} S_{19} \\ S_{9} S_{14} S_{17} \\ S_{3} S_{7} S_{4} S_{19} \\ S_{1} S_{2} S_{9} S_{8} \\ S_{3} S_{3} S_{5} S_{11} \\ S_{1} S_{2} S_{9} S_{8} \\ S_{3} S_{7} S_{4} S_{19} \\ S_{9} S_{14} S_{17} \\ S_{19} \\ \end{array} & \begin{array}{c} S_{20} \\ S_{10} S_{18} S_{13} \\ S_{2} S_{12} S_{6} S_{20} \\ S_{1} S_{3} S_{10} S_{7} \\ S_{2} S_{2} S_{9} S_{4} \\ S_{3} S_{1} S_{7} S_{10} \\ S_{2} S_{6} S_{12} S_{20} \\ S_{10} S_{18} S_{13} \\ S_{20} \\ \end{array} & \begin{array}{c} S_{21} \\ S_{11} S_{16} S_{15} \\ S_{2} S_{5} S_{8} S_{21} \\ S_{1} S_{3} S_{11} S_{10} \\ S_{2} S_{2} S_{12} S_{6} \\ S_{3} S_{1} S_{11} S_{10} \\ S_{2} S_{8} S_{5} S_{21} \\ S_{11} S_{16} S_{15} \\ S_{21} \\ \end{array} \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.
Cartan matrix
[math]\left( \begin{array}{ccccccccccccccccccccc} 16 & 8 & 8 & 8 & 8 & 8 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 2 & 2 & 2 & 2 & 2 & 2 \\ 8 & 16 & 8 & 4 & 4 & 4 & 4 & 8 & 8 & 4 & 4 & 8 & 2 & 2 & 2 & 2 & 2 & 4 & 4 & 2 & 4 \\ 8 & 8 & 16 & 4 & 4 & 4 & 8 & 4 & 4 & 8 & 8 & 4 & 2 & 2 & 2 & 4 & 4 & 2 & 2 & 4 & 2 \\ 8 & 4 & 4 & 8 & 4 & 4 & 4 & 2 & 2 & 2 & 2 & 4 & 2 & 4 & 0 & 0 & 2 & 1 & 2 & 1 & 0 \\ 8 & 4 & 4 & 4 & 8 & 4 & 2 & 4 & 2 & 4 & 2 & 2 & 0 & 2 & 4 & 2 & 1 & 0 & 1 & 0 & 2 \\ 8 & 4 & 4 & 4 & 4 & 8 & 2 & 2 & 4 & 2 & 4 & 2 & 4 & 0 & 2 & 1 & 0 & 2 & 0 & 2 & 1 \\ 4 & 4 & 8 & 4 & 2 & 2 & 8 & 2 & 2 & 4 & 4 & 4 & 1 & 2 & 0 & 0 & 4 & 1 & 2 & 2 & 0 \\ 4 & 8 & 4 & 2 & 4 & 2 & 2 & 8 & 4 & 4 & 2 & 4 & 0 & 1 & 2 & 2 & 1 & 0 & 2 & 0 & 4 \\ 4 & 8 & 4 & 2 & 2 & 4 & 2 & 4 & 8 & 2 & 4 & 4 & 2 & 0 & 1 & 1 & 0 & 4 & 0 & 2 & 2 \\ 4 & 4 & 8 & 2 & 4 & 2 & 4 & 4 & 2 & 8 & 4 & 2 & 0 & 1 & 2 & 4 & 2 & 0 & 1 & 0 & 2 \\ 4 & 4 & 8 & 2 & 2 & 4 & 4 & 2 & 4 & 4 & 8 & 2 & 2 & 0 & 1 & 2 & 0 & 2 & 0 & 4 & 1 \\ 4 & 8 & 4 & 4 & 2 & 2 & 4 & 4 & 4 & 2 & 2 & 8 & 1 & 2 & 0 & 0 & 2 & 2 & 4 & 1 & 0 \\ 4 & 2 & 2 & 2 & 0 & 4 & 1 & 0 & 2 & 0 & 2 & 1 & 4 & 0 & 0 & 0 & 0 & 2 & 0 & 2 & 0 \\ 4 & 2 & 2 & 4 & 2 & 0 & 2 & 1 & 0 & 1 & 0 & 2 & 0 & 4 & 0 & 0 & 2 & 0 & 2 & 0 & 0 \\ 4 & 2 & 2 & 0 & 4 & 2 & 0 & 2 & 1 & 2 & 1 & 0 & 0 & 0 & 4 & 2 & 0 & 0 & 0 & 0 & 2 \\ 2 & 2 & 4 & 0 & 2 & 1 & 0 & 2 & 1 & 4 & 2 & 0 & 0 & 0 & 2 & 4 & 0 & 0 & 0 & 0 & 2 \\ 2 & 2 & 4 & 2 & 1 & 0 & 4 & 1 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 0 & 4 & 0 & 2 & 0 & 0 \\ 2 & 4 & 2 & 1 & 0 & 2 & 1 & 0 & 4 & 0 & 2 & 2 & 2 & 0 & 0 & 0 & 0 & 4 & 0 & 2 & 0 \\ 2 & 4 & 2 & 2 & 1 & 0 & 2 & 2 & 0 & 1 & 0 & 4 & 0 & 2 & 0 & 0 & 2 & 0 & 4 & 0 & 0 \\ 2 & 2 & 4 & 1 & 0 & 2 & 2 & 0 & 2 & 0 & 4 & 1 & 2 & 0 & 0 & 0 & 0 & 2 & 0 & 4 & 0 \\ 2 & 4 & 2 & 0 & 2 & 1 & 0 & 4 & 2 & 2 & 1 & 0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 4 \end{array}\right)[/math]
Decomposition matrix
[math]\left( \begin{array}{ccccccccccccccccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{array}\right)[/math]