Difference between revisions of "M(32,51,11)"
(3 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
|representative = <math>k(((C_2)^4 : C_{15}) \times C_2)</math> | |representative = <math>k(((C_2)^4 : C_{15}) \times C_2)</math> | ||
|defect = [[(C2)%5E5|<math>(C_2)^5</math>]] | |defect = [[(C2)%5E5|<math>(C_2)^5</math>]] | ||
− | |inertialquotients = <math>C_{15}</math> | + | |inertialquotients = <math>C_{15}</math>, ? |
|k(B) = 32 | |k(B) = 32 | ||
|l(B) = 15 | |l(B) = 15 | ||
Line 27: | Line 27: | ||
|pcoveringblocks = | |pcoveringblocks = | ||
}} | }} | ||
+ | A block with defect group [[(C2)%5E5|<math>(C_2)^5</math>]] and inertial quotient <math>C_{15}</math> is in this Morita equivalence class or in [[M(32,51,12)]], which is derived equivalent to this class. | ||
+ | |||
+ | It is unknown whether this Morita equivalence class contains blocks with inertial quotient <math>C_7:C_3 \times C_3</math> (with action as in [[M(32,51,24)]]). | ||
Latest revision as of 15:55, 9 December 2019
Representative: | [math]k(((C_2)^4 : C_{15}) \times C_2)[/math] |
---|---|
Defect groups: | [math](C_2)^5[/math] |
Inertial quotients: | [math]C_{15}[/math], ? |
[math]k(B)=[/math] | 32 |
[math]l(B)=[/math] | 15 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | See below. |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O} (((C_2)^4 : C_{15}) \times C_2)[/math] |
Decomposition matrices: | See below. |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | |
[math]PI(B)=[/math] | |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | M(32,51,12) |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | |
[math]p'[/math]-index covered blocks: | |
Index [math]p[/math] covering blocks: |
A block with defect group [math](C_2)^5[/math] and inertial quotient [math]C_{15}[/math] is in this Morita equivalence class or in M(32,51,12), which is derived equivalent to this class.
It is unknown whether this Morita equivalence class contains blocks with inertial quotient [math]C_7:C_3 \times C_3[/math] (with action as in M(32,51,24)).
Contents
Basic algebra
Other notatable representatives
Covering blocks and covered blocks
Let [math]N \triangleleft G[/math] with prime [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].
If [math]b[/math] is in M(32,51,11), then [math]B[/math] is in M(32,51,2), M(32,51,5), or M(32,51,11).
Projective indecomposable modules
Labelling the simple [math]B[/math]-modules by [math]S_1, \dots, S_{15}[/math], the projective indecomposable modules have Loewy structure as follows:
[math]\begin{array}{ccccc} \begin{array}{c} S_1 \\ S_1 S_{10} S_{11} S_9 S_4 \\ S_{11} S_9 S_4 S_{10} S_{12} S_3 S_{14} S_{15} S_2 S_{13} \\ S_3 S_{12} S_{14} S_2 S_{15} S_{13} S_5 S_6 S_8 S_7 \\ S_6 S_5 S_7 S_8 S_1 \\ S_1 \\ \end{array} & \begin{array}{c} S_2 \\ S_{12} S_{14} S_5 S_7 S_2 \\ S_{10} S_7 S_{14} S_6 S_8 S_4 S_1 S_5 S_{12} S_{15} \\ S_{15} S_6 S_1 S_8 S_4 S_{10} S_3 S_9 S_{13} S_{11} \\ S_9 S_{13} S_3 S_{11} S_2 \\ S_2 \\ \end{array} & \begin{array}{c} S_3 \\ S_3 S_7 S_2 S_6 S_{11} \\ S_{12} S_7 S_{11} S_5 S_2 S_4 S_6 S_1 S_{14} S_{13} \\ S_{14} S_4 S_1 S_5 S_{12} S_{13} S_{15} S_9 S_8 S_{10} \\ S_9 S_8 S_{10} S_{15} S_3 \\ S_3 \\ \end{array} & \begin{array}{c} S_4 \\ S_{13} S_9 S_{14} S_{15} S_4 \\ S_{14} S_2 S_8 S_6 S_3 S_{10} S_{15} S_5 S_9 S_{13} \\ S_8 S_{10} S_1 S_5 S_2 S_7 S_3 S_6 S_{12} S_{11} \\ S_7 S_1 S_{12} S_{11} S_4 \\ S_4 \\ \end{array} & \begin{array}{c} S_5 \\ S_1 S_{10} S_{12} S_5 S_8 \\ S_4 S_7 S_1 S_{10} S_8 S_9 S_3 S_{15} S_{12} S_{11} \\ S_{14} S_{11} S_{13} S_2 S_4 S_7 S_{15} S_3 S_9 S_6 \\ S_{13} S_{14} S_6 S_5 S_2 \\ S_5 \\ \end{array} \end{array} [/math]
[math]\begin{array}{ccccc} \begin{array}{c} S_6 \\ S_1 S_5 S_{11} S_6 S_{13} \\ S_{12} S_{11} S_{10} S_1 S_5 S_2 S_8 S_9 S_4 S_{13} \\ S_9 S_3 S_{10} S_{14} S_{15} S_8 S_7 S_2 S_4 S_{12} \\ S_7 S_{14} S_{15} S_3 S_6 \\ S_6 \\ \end{array} & \begin{array}{c} S_7 \\ S_4 S_6 S_{14} S_1 S_7 \\ S_5 S_9 S_{13} S_{14} S_4 S_6 S_{11} S_{15} S_1 S_{10} \\ S_3 S_{13} S_8 S_2 S_9 S_{12} S_{15} S_5 S_{11} S_{10} \\ S_{12} S_2 S_7 S_3 S_8 \\ S_7 \\ \end{array} & \begin{array}{c} S_8 \\ S_8 S_1 S_3 S_7 S_9 \\ S_9 S_{14} S_1 S_4 S_{10} S_6 S_2 S_{11} S_7 S_3 \\ S_{14} S_{15} S_6 S_2 S_4 S_{11} S_{10} S_{13} S_{12} S_5 \\ S_{15} S_5 S_{13} S_8 S_{12} \\ S_8 \\ \end{array} & \begin{array}{c} S_9 \\ S_3 S_{14} S_{10} S_2 S_9 \\ S_{10} S_{15} S_2 S_7 S_6 S_{14} S_{12} S_{11} S_5 S_3 \\ S_4 S_6 S_5 S_{12} S_{13} S_{11} S_7 S_1 S_{15} S_8 \\ S_1 S_{13} S_8 S_4 S_9 \\ S_9 \\ \end{array} & \begin{array}{c} S_{10} \\ S_{15} S_{12} S_3 S_{10} S_{11} \\ S_4 S_2 S_{13} S_8 S_7 S_6 S_3 S_{15} S_{11} S_{12} \\ S_9 S_5 S_7 S_{14} S_6 S_{13} S_2 S_8 S_4 S_1 \\ S_{14} S_5 S_9 S_1 S_{10} \\ S_{10} \\ \end{array} \end{array} [/math]
[math]\begin{array}{ccccc} \begin{array}{c} S_{11} \\ S_{13} S_{11} S_2 S_{12} S_4 \\ S_8 S_4 S_9 S_7 S_{12} S_{15} S_2 S_{13} S_{14} S_5 \\ S_1 S_{14} S_8 S_3 S_5 S_9 S_6 S_{15} S_{10} S_7 \\ S_1 S_{10} S_6 S_3 S_{11} \\ S_{11} \\ \end{array} & \begin{array}{c} S_{12} \\ S_{15} S_4 S_{12} S_7 S_8 \\ S_6 S_3 S_4 S_9 S_1 S_7 S_{14} S_{13} S_{15} S_8 \\ S_2 S_{13} S_3 S_1 S_9 S_6 S_{10} S_{11} S_{14} S_5 \\ S_{11} S_5 S_2 S_{10} S_{12} \\ S_{12} \\ \end{array} & \begin{array}{c} S_{13} \\ S_8 S_5 S_{13} S_9 S_2 \\ S_3 S_{12} S_7 S_1 S_5 S_{10} S_9 S_8 S_2 S_{14} \\ S_{12} S_7 S_3 S_{10} S_{14} S_1 S_{11} S_{15} S_6 S_4 \\ S_{11} S_4 S_{15} S_6 S_{13} \\ S_{13} \\ \end{array} & \begin{array}{c} S_{14} \\ S_6 S_{10} S_{14} S_{15} S_5 \\ S_{15} S_5 S_3 S_{12} S_{13} S_{11} S_1 S_{10} S_8 S_6 \\ S_2 S_{12} S_8 S_{13} S_3 S_1 S_{11} S_4 S_9 S_7 \\ S_7 S_4 S_9 S_2 S_{14} \\ S_{14} \\ \end{array} & \begin{array}{c} S_{15} \\ S_{15} S_6 S_8 S_{13} S_3 \\ S_2 S_8 S_{13} S_3 S_5 S_1 S_6 S_9 S_{11} S_7 \\ S_2 S_{11} S_7 S_5 S_1 S_9 S_{10} S_4 S_{12} S_{14} \\ S_{14} S_{12} S_{10} S_4 S_{15} \\ S_{15} \\ \end{array} \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.
Cartan matrix
[math]\left( \begin{array}{ccc} 4 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 2 & 4 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 2 & 2 & 4 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 4 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 & 4 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 & 2 & 4 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 & 2 & 2 & 4 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 4 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 4 & 2 & 2 & 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 4 & 2 & 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 4 & 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 4 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 4 & 2 & 2 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 4 & 2 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 4 \end{array} \right)[/math]
Decomposition matrix
[math]\left( \begin{array}{ccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{array}\right)[/math]