Difference between revisions of "M(16,14,10)"

From Block library
Jump to: navigation, search
(Created page with "{{blockbox |title = M(16,14,9) - <math>B_0(k(A_5 \times A_5))</math> |image =   |representative = <math>B_0(k(A_5 \times A_5))</math> |defect = (C2)%5E4|<math>(C_2)^...")
 
(Covering blocks and covered blocks)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
{{blockbox
 
{{blockbox
|title = M(16,14,9) - <math>B_0(k(A_5 \times A_5))</math>  
+
|title = M(16,14,10) - <math>B_0(k(A_5 \times A_5))</math>  
 
|image = &nbsp;  
 
|image = &nbsp;  
 
|representative =  <math>B_0(k(A_5 \times A_5))</math>
 
|representative =  <math>B_0(k(A_5 \times A_5))</math>
Line 46: Line 46:
 
Let <math>N \triangleleft G</math> with prime <math>p'</math>-index and let <math>B</math> be a block of <math>\mathcal{O} G</math> covering a block <math>b</math> of <math>\mathcal{O} N</math>.
 
Let <math>N \triangleleft G</math> with prime <math>p'</math>-index and let <math>B</math> be a block of <math>\mathcal{O} G</math> covering a block <math>b</math> of <math>\mathcal{O} N</math>.
  
If <math>b</math> is in M(16,14,9), then <math>B</math> is also in M(16,14,9).
+
If <math>b</math> is in M(16,14,10), then <math>B</math> is also in M(16,14,10).
  
 
== Projective indecomposable modules ==
 
== Projective indecomposable modules ==

Latest revision as of 13:19, 28 November 2019

M(16,14,10) - [math]B_0(k(A_5 \times A_5))[/math]
[[File: |250px]]
Representative: [math]B_0(k(A_5 \times A_5))[/math]
Defect groups: [math](C_2)^4[/math]
Inertial quotients: [math]C_3 \times C_3[/math]
[math]k(B)=[/math] 16
[math]l(B)=[/math] 9
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math]  
Cartan matrix: [math]\left( \begin{array}{ccccccccc} 16 & 8 & 8 & 8 & 8 & 4 & 4 & 4 & 4 \\ 8 & 8 & 4 & 4 & 4 & 4 & 2 & 2 & 4 \\ 8 & 4 & 8 & 4 & 4 & 2 & 4 & 4 & 2 \\ 8 & 4 & 4 & 8 & 4 & 4 & 2 & 4 & 2 \\ 8 & 4 & 4 & 4 & 8 & 2 & 4 & 2 & 4 \\ 4 & 4 & 2 & 4 & 2 & 4 & 1 & 2 & 2 \\ 4 & 2 & 4 & 2 & 4 & 1 & 4 & 2 & 2 \\ 4 & 2 & 4 & 4 & 2 & 2 & 2 & 4 & 1 \\ 4 & 4 & 2 & 2 & 4 & 2 & 2 & 1 & 4 \end{array} \right)[/math]
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]B_0(\mathcal{O} (A_5 \times A_5))[/math]
Decomposition matrices: See below
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math]
[math]PI(B)=[/math]
Source algebras known? No
Source algebra reps:
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: M(16,14,8), M(16,14,9)
[math]\mathcal{O}[/math]-derived equiv. classes known? Yes
[math]p'[/math]-index covering blocks:
[math]p'[/math]-index covered blocks:
Index [math]p[/math] covering blocks:

Basic algebra

Other notatable representatives

Covering blocks and covered blocks

Let [math]N \triangleleft G[/math] with prime [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].

If [math]b[/math] is in M(16,14,10), then [math]B[/math] is also in M(16,14,10).

Projective indecomposable modules

Irreducible characters

All irreducible characters have height zero.

Decomposition matrix

[math]\left( \begin{array}{ccccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{array}\right)[/math]


Back to [math](C_2)^4[/math]