Difference between revisions of "M(16,14,6)"
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{blockbox | {{blockbox | ||
− | |title = M(16,14, | + | |title = M(16,14,6) - <math>k(C_2 \times ((C_2)^3 : C_7))</math> |
|image = | |image = | ||
|representative = <math>k((C_2)^4 : C_7)</math> | |representative = <math>k((C_2)^4 : C_7)</math> | ||
Line 9: | Line 9: | ||
|k-morita-frob = 1 | |k-morita-frob = 1 | ||
|Pic-k= | |Pic-k= | ||
− | |cartan = <math>\left( \begin{array}{ | + | |cartan = <math>\left( \begin{array}{ccccccc} |
− | 2 & | + | 4 & 2 & 2 & 2 & 2 & 2 & 2 \\ |
− | + | 2 & 4 & 2 & 2 & 2 & 2 & 2 \\ | |
− | + | 2 & 2 & 4 & 2 & 2 & 2 & 2 \\ | |
− | + | 2 & 2 & 2 & 4 & 2 & 2 & 2 \\ | |
− | + | 2 & 2 & 2 & 2 & 4 & 2 & 2 \\ | |
− | + | 2 & 2 & 2 & 2 & 2 & 4 & 2 \\ | |
− | + | 2 & 2 & 2 & 2 & 2 & 2 & 4 | |
\end{array} \right)</math> | \end{array} \right)</math> | ||
|defect-morita-inv? = Yes | |defect-morita-inv? = Yes | ||
Line 22: | Line 22: | ||
|O-morita? = Yes | |O-morita? = Yes | ||
|O-morita = <math>\mathcal{O} (C_2 \times ((C_2)^3 : C_7))</math> | |O-morita = <math>\mathcal{O} (C_2 \times ((C_2)^3 : C_7))</math> | ||
− | |decomp = | + | |decomp = See below |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|O-morita-frob = 1 | |O-morita-frob = 1 | ||
|Pic-O = | |Pic-O = | ||
Line 116: | Line 107: | ||
All irreducible characters have height zero. | All irreducible characters have height zero. | ||
+ | == Decomposition matrix == | ||
+ | |||
+ | <math>\left( \begin{array}{ccc} | ||
+ | 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ | ||
+ | 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ | ||
+ | 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ | ||
+ | 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ | ||
+ | 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ | ||
+ | 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ | ||
+ | 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ | ||
+ | 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ | ||
+ | 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ | ||
+ | 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ | ||
+ | 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ | ||
+ | 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ | ||
+ | 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ | ||
+ | 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ | ||
+ | 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ | ||
+ | 1 & 1 & 1 & 1 & 1 & 1 & 1 | ||
+ | \end{array}\right)</math> | ||
[[(C2)%5E4|Back to <math>(C_2)^4</math>]] | [[(C2)%5E4|Back to <math>(C_2)^4</math>]] |
Latest revision as of 14:53, 27 November 2019
Representative: | [math]k((C_2)^4 : C_7)[/math] |
---|---|
Defect groups: | [math](C_2)^4[/math] |
Inertial quotients: | [math]C_5[/math] |
[math]k(B)=[/math] | 16 |
[math]l(B)=[/math] | 7 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | [math]\left( \begin{array}{ccccccc} 4 & 2 & 2 & 2 & 2 & 2 & 2 \\ 2 & 4 & 2 & 2 & 2 & 2 & 2 \\ 2 & 2 & 4 & 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 4 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 & 4 & 2 & 2 \\ 2 & 2 & 2 & 2 & 2 & 4 & 2 \\ 2 & 2 & 2 & 2 & 2 & 2 & 4 \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O} (C_2 \times ((C_2)^3 : C_7))[/math] |
Decomposition matrices: | See below |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | |
[math]PI(B)=[/math] | |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | M(16,14,7) |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | |
[math]p'[/math]-index covered blocks: | |
Index [math]p[/math] covering blocks: |
Contents
Basic algebra
Other notatable representatives
Covering blocks and covered blocks
Let [math]N \triangleleft G[/math] with [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].
If [math]b[/math] is in M(16,14,6), then [math]B[/math] is in M(16,14,1), M(16,14,6) or M(16,14,13).
Projective indecomposable modules
Labelling the simple [math]B[/math]-modules by [math]S_1, S_2, S_3, S_4, S_5, S_6, S_7[/math], the projective indecomposable modules have Loewy structure as follows:
[math]\begin{array}{ccccccc} \begin{array}{c} S_1 \\ S_3 S_4 S_5 \\ S_2 S_6 S_7 \\ S_1 \\ \end{array} & \begin{array}{c} S_2 \\ S_1 S_4 S_7 \\ S_3 S_5 S_6 \\ S_2 \\ \end{array} & \begin{array}{c} S_3 \\ S_2 S_4 S_6 \\ S_1 S_5 S_7 \\ S_3 \\ \end{array} & \begin{array}{c} S_4 \\ S_5 S_6 S_7 \\ S_1 S_2 S_3 \\ S_4 \\ \end{array} & \begin{array}{c} S_5 \\ S_2 S_3 S_7 \\ S_1 S_4 S_6 \\ S_5 \\ \end{array} & \begin{array}{c} S_6 \\ S_1 S_2 S_5 \\ S_3 S_4 S_7 \\ S_6 \\ \end{array} & \begin{array}{c} S_7 \\ S_1 S_3 S_6 \\ S_2 S_4 S_5 \\ S_7 \\ \end{array} \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.
Decomposition matrix
[math]\left( \begin{array}{ccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{array}\right)[/math]