Difference between revisions of "M(32,51,12)"

From Block library
Jump to: navigation, search
(Created page with "{{blockbox |title = M(32,51,12) - <math>B_0(k(SL_2(16) \times C_2))</math> |image =   |representative = <math>B_0(k(SL_2(16) \times C_2))</math> |defect = (C2)%5E5|<...")
 
 
(4 intermediate revisions by the same user not shown)
Line 4: Line 4:
 
|representative =  <math>B_0(k(SL_2(16) \times C_2))</math>
 
|representative =  <math>B_0(k(SL_2(16) \times C_2))</math>
 
|defect = [[(C2)%5E5|<math>(C_2)^5</math>]]
 
|defect = [[(C2)%5E5|<math>(C_2)^5</math>]]
|inertialquotients = <math>C_{15}</math>
+
|inertialquotients = <math>C_{15}</math>, ?
 
|k(B) = 32
 
|k(B) = 32
 
|l(B) = 15
 
|l(B) = 15
Line 28: Line 28:
 
}}
 
}}
  
 +
A block with defect group [[(C2)%5E5|<math>(C_2)^5</math>]] and inertial quotient <math>C_{15}</math> is in this Morita equivalence class or in [[M(32,51,11)]], which is derived equivalent to this class.
 +
 +
It is unknown whether this Morita equivalence class contains blocks with inertial quotient <math>C_7:C_3 \times C_3</math> (with action as in [[M(32,51,24)]]).
  
 
== Basic algebra ==
 
== Basic algebra ==
Line 37: Line 40:
 
Let <math>N \triangleleft G</math> with prime <math>p'</math>-index and let <math>B</math> be a block of <math>\mathcal{O} G</math> covering a block <math>b</math> of <math>\mathcal{O} N</math>.
 
Let <math>N \triangleleft G</math> with prime <math>p'</math>-index and let <math>B</math> be a block of <math>\mathcal{O} G</math> covering a block <math>b</math> of <math>\mathcal{O} N</math>.
  
If <math>b</math> is in M(32,51,11), then <math>B</math> is in [[M(32,51,2)]], [[M(32,51,5)]], or M(32,51,11).
+
If <math>b</math> is in M(32,51,12), then <math>B</math> is also in M(32,51,12).
  
 
== Projective indecomposable modules ==
 
== Projective indecomposable modules ==

Latest revision as of 15:55, 9 December 2019

M(32,51,12) - [math]B_0(k(SL_2(16) \times C_2))[/math]
[[File: |250px]]
Representative: [math]B_0(k(SL_2(16) \times C_2))[/math]
Defect groups: [math](C_2)^5[/math]
Inertial quotients: [math]C_{15}[/math], ?
[math]k(B)=[/math] 32
[math]l(B)=[/math] 15
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math]  
Cartan matrix: See below.
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]B_0(\mathcal{O}(SL_2(16) \times C_2))[/math]
Decomposition matrices: See below.
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math]
[math]PI(B)=[/math]
Source algebras known? No
Source algebra reps:
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: M(32,51,11)
[math]\mathcal{O}[/math]-derived equiv. classes known? Yes
[math]p'[/math]-index covering blocks:
[math]p'[/math]-index covered blocks:
Index [math]p[/math] covering blocks:

A block with defect group [math](C_2)^5[/math] and inertial quotient [math]C_{15}[/math] is in this Morita equivalence class or in M(32,51,11), which is derived equivalent to this class.

It is unknown whether this Morita equivalence class contains blocks with inertial quotient [math]C_7:C_3 \times C_3[/math] (with action as in M(32,51,24)).

Basic algebra

Other notatable representatives

Covering blocks and covered blocks

Let [math]N \triangleleft G[/math] with prime [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].

If [math]b[/math] is in M(32,51,12), then [math]B[/math] is also in M(32,51,12).

Projective indecomposable modules

Irreducible characters

All irreducible characters have height zero.

Cartan matrix

[math]\left( \begin{array}{ccc} 32 & 16 & 16 & 16 & 16 & 8 & 8 & 8 & 8 & 8 & 8 & 4 & 4 & 4 & 4 \\ 16 & 16 & 8 & 8 & 8 & 4 & 8 & 4 & 4 & 8 & 0 & 0 & 2 & 4 & 0 \\ 16 & 8 & 16 & 8 & 8 & 8 & 4 & 0 & 4 & 4 & 8 & 0 & 0 & 2 & 4 \\ 16 & 8 & 8 & 16 & 8 & 4 & 8 & 8 & 0 & 4 & 4 & 4 & 0 & 0 & 2 \\ 16 & 8 & 8 & 8 & 16 & 8 & 4 & 4 & 8 & 0 & 4 & 2 & 4 & 0 & 0 \\ 8 & 4 & 8 & 4 & 8 & 8 & 2 & 0 & 4 & 0 & 4 & 0 & 0 & 0 & 0 \\ 8 & 8 & 4 & 8 & 4 & 2 & 8 & 4 & 0 & 4 & 0 & 0 & 0 & 0 & 0 \\ 8 & 4 & 0 & 8 & 4 & 0 & 4 & 8 & 0 & 2 & 0 & 4 & 0 & 0 & 0 \\ 8 & 4 & 4 & 0 & 8 & 4 & 0 & 0 & 8 & 0 & 2 & 0 & 4 & 0 & 0 \\ 8 & 8 & 4 & 4 & 0 & 0 & 4 & 2 & 0 & 8 & 0 & 0 & 0 & 4 & 0 \\ 8 & 0 & 8 & 4 & 4 & 4 & 0 & 0 & 2 & 0 & 8 & 0 & 0 & 0 & 4 \\ 4 & 0 & 0 & 4 & 2 & 0 & 0 & 4 & 0 & 0 & 0 & 4 & 0 & 0 & 0 \\ 4 & 2 & 0 & 0 & 4 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 4 & 0 & 0 \\ 4 & 4 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 4 & 0 \\ 4 & 0 & 4 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 4 \\ \end{array} \right)[/math]

Decomposition matrix

[math]\left( \begin{array}{ccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \end{array}\right)[/math]

Back to [math](C_2)^5[/math]