Difference between revisions of "M(32,51,6)"
(Created page with "{{blockbox |title = M(32,51,6) - <math>k(((C_2)^3 \rtimes C_7) \times (C_2)^2)</math> |image = |representative = <math>k(((C_2)^3 \rtimes C_7) \times (C_2)^2)</math>...") |
(→Projective indecomposable modules) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{blockbox | {{blockbox | ||
− | |title = M(32,51,6) - <math>k(((C_2)^3 | + | |title = M(32,51,6) - <math>k(((C_2)^3 : C_7) \times (C_2)^2)</math> |
|image = | |image = | ||
− | |representative = <math>k(((C_2)^3 | + | |representative = <math>k(((C_2)^3 : C_7) \times (C_2)^2)</math> |
|defect = [[(C2)%5E5|<math>(C_2)^5</math>]] | |defect = [[(C2)%5E5|<math>(C_2)^5</math>]] | ||
|inertialquotients = <math>C_7</math> | |inertialquotients = <math>C_7</math> | ||
Line 21: | Line 21: | ||
|inertial-morita-inv? = Yes | |inertial-morita-inv? = Yes | ||
|O-morita? = Yes | |O-morita? = Yes | ||
− | |O-morita = <math>\mathcal{O} (((C_2)^3 | + | |O-morita = <math>\mathcal{O} (((C_2)^3 : C_7) \times (C_2)^2)</math> |
|decomp = See below. | |decomp = See below. | ||
|O-morita-frob = 1 | |O-morita-frob = 1 | ||
Line 51: | Line 51: | ||
Labelling the simple <math>B</math>-modules by <math>S_1, \dots, S_7</math>, the projective indecomposable modules have Loewy structure as follows: | Labelling the simple <math>B</math>-modules by <math>S_1, \dots, S_7</math>, the projective indecomposable modules have Loewy structure as follows: | ||
− | <math>\begin{array}{ | + | <math>\begin{array}{cccc} |
\begin{array}{c} | \begin{array}{c} | ||
S_1 \\ | S_1 \\ | ||
Line 87: | Line 87: | ||
S_4 \\ | S_4 \\ | ||
\end{array} | \end{array} | ||
− | & | + | \end{array}</math> |
+ | |||
+ | <br> <br> | ||
+ | |||
+ | <math> | ||
+ | \begin{array}{ccc} | ||
\begin{array}{c} | \begin{array}{c} | ||
S_5 \\ | S_5 \\ |
Latest revision as of 12:05, 6 December 2019
Representative: | [math]k(((C_2)^3 : C_7) \times (C_2)^2)[/math] |
---|---|
Defect groups: | [math](C_2)^5[/math] |
Inertial quotients: | [math]C_7[/math] |
[math]k(B)=[/math] | 32 |
[math]l(B)=[/math] | 7 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | [math]\left( \begin{array}{ccccccc} 8 & 4 & 4 & 4 & 4 & 4 & 4 \\ 4 & 8 & 4 & 4 & 4 & 4 & 4 \\ 4 & 4 & 8 & 4 & 4 & 4 & 4 \\ 4 & 4 & 4 & 8 & 4 & 4 & 4 \\ 4 & 4 & 4 & 4 & 8 & 4 & 4 \\ 4 & 4 & 4 & 4 & 4 & 8 & 4 \\ 4 & 4 & 4 & 4 & 4 & 4 & 8 \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O} (((C_2)^3 : C_7) \times (C_2)^2)[/math] |
Decomposition matrices: | See below. |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | |
[math]PI(B)=[/math] | |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | M(32,51,7) |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | |
[math]p'[/math]-index covered blocks: | |
Index [math]p[/math] covering blocks: |
Contents
Basic algebra
Other notatable representatives
Covering blocks and covered blocks
Let [math]N \triangleleft G[/math] with prime [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].
If [math]b[/math] is in M(32,51,6), then [math]B[/math] is in M(32,51,1), M(32,51,6), M(32,51,13), M(31,51,17) or M(32,51,20).
Projective indecomposable modules
Labelling the simple [math]B[/math]-modules by [math]S_1, \dots, S_7[/math], the projective indecomposable modules have Loewy structure as follows:
[math]\begin{array}{cccc} \begin{array}{c} S_1 \\ S_1 S_1 S_5 S_3 S_4 \\ S_5 S_3 S_4 S_1 S_4 S_5 S_3 S_2 S_6 S_7 \\ S_6 S_5 S_4 S_6 S_7 S_2 S_2 S_7 S_3 S_1 \\ S_7 S_6 S_2 S_1 S_1 \\ S_1 \end{array} & \begin{array}{c} S_2 \\ S_1 S_2 S_7 S_4 S_2 \\ S_7 S_6 S_4 S_5 S_3 S_2 S_7 S_4 S_1 S_1 \\ S_6 S_6 S_4 S_7 S_5 S_3 S_1 S_5 S_3 S_2 \\ S_5 S_3 S_6 S_2 S_2 \\ S_2 \\ \end{array} & \begin{array}{c} S_3 \\ S_2 S_3 S_4 S_6 S_3 \\ S_6 S_4 S_1 S_3 S_7 S_4 S_5 S_6 S_2 S_2 \\ S_4 S_2 S_5 S_6 S_5 S_3 S_7 S_7 S_1 S_1 \\ S_3 S_1 S_7 S_5 S_3 \\ S_3 \\ \end{array} & \begin{array}{c} S_4 \\ S_6 S_4 S_7 S_5 S_4 \\ S_7 S_4 S_2 S_6 S_3 S_1 S_6 S_7 S_5 S_5 \\ S_4 S_2 S_2 S_5 S_7 S_6 S_1 S_1 S_3 S_3 \\ S_2 S_4 S_4 S_3 S_1 \\ S_4 \\ \end{array} \end{array}[/math]
[math] \begin{array}{ccc} \begin{array}{c} S_5 \\ S_5 S_2 S_7 S_3 S_5 \\ S_3 S_5 S_1 S_4 S_6 S_2 S_2 S_3 S_7 S_7 \\ S_6 S_5 S_6 S_3 S_7 S_2 S_1 S_1 S_4 S_4 \\ S_6 S_4 S_5 S_1 S_5 \\ S_5 \\ \end{array} & \begin{array}{c} S_6 \\ S_2 S_6 S_1 S_6 S_5 \\ S_4 S_3 S_2 S_7 S_1 S_6 S_5 S_2 S_5 S_1 \\ S_4 S_5 S_7 S_3 S_1 S_2 S_4 S_7 S_3 S_6 \\ S_4 S_3 S_7 S_6 S_6 \\ S_6 \\ \end{array} & \begin{array}{c} S_7 \\ S_3 S_1 S_6 S_7 S_7 \\ S_2 S_3 S_3 S_6 S_5 S_4 S_7 S_6 S_1 S_1 \\ S_4 S_6 S_5 S_2 S_1 S_3 S_5 S_4 S_2 S_7 \\ S_4 S_2 S_5 S_7 S_7 \\ S_7 \\ \end{array} \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.
Decomposition matrix
[math]\left( \begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{array}\right)[/math]