Difference between revisions of "M(32,51,6)"
(→Projective indecomposable modules) |
(→Projective indecomposable modules) |
||
Line 88: | Line 88: | ||
\end{array} | \end{array} | ||
\end{array}</math> | \end{array}</math> | ||
− | + | <br> | |
<math> | <math> | ||
\begin{array}{ccc} | \begin{array}{ccc} |
Revision as of 12:05, 6 December 2019
Representative: | [math]k(((C_2)^3 : C_7) \times (C_2)^2)[/math] |
---|---|
Defect groups: | [math](C_2)^5[/math] |
Inertial quotients: | [math]C_7[/math] |
[math]k(B)=[/math] | 32 |
[math]l(B)=[/math] | 7 |
[math]{\rm mf}_k(B)=[/math] | 1 |
[math]{\rm Pic}_k(B)=[/math] | |
Cartan matrix: | [math]\left( \begin{array}{ccccccc} 8 & 4 & 4 & 4 & 4 & 4 & 4 \\ 4 & 8 & 4 & 4 & 4 & 4 & 4 \\ 4 & 4 & 8 & 4 & 4 & 4 & 4 \\ 4 & 4 & 4 & 8 & 4 & 4 & 4 \\ 4 & 4 & 4 & 4 & 8 & 4 & 4 \\ 4 & 4 & 4 & 4 & 4 & 8 & 4 \\ 4 & 4 & 4 & 4 & 4 & 4 & 8 \end{array} \right)[/math] |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
[math]\mathcal{O}[/math]-Morita classes known? | Yes |
[math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O} (((C_2)^3 : C_7) \times (C_2)^2)[/math] |
Decomposition matrices: | See below. |
[math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 |
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | |
[math]PI(B)=[/math] | |
Source algebras known? | No |
Source algebra reps: | |
[math]k[/math]-derived equiv. classes known? | Yes |
[math]k[/math]-derived equivalent to: | M(32,51,7) |
[math]\mathcal{O}[/math]-derived equiv. classes known? | Yes |
[math]p'[/math]-index covering blocks: | |
[math]p'[/math]-index covered blocks: | |
Index [math]p[/math] covering blocks: |
Contents
Basic algebra
Other notatable representatives
Covering blocks and covered blocks
Let [math]N \triangleleft G[/math] with prime [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].
If [math]b[/math] is in M(32,51,6), then [math]B[/math] is in M(32,51,1), M(32,51,6), M(32,51,13), M(31,51,17) or M(32,51,20).
Projective indecomposable modules
Labelling the simple [math]B[/math]-modules by [math]S_1, \dots, S_7[/math], the projective indecomposable modules have Loewy structure as follows:
[math]\begin{array}{cccc}
\begin{array}{c}
S_1 \\
S_1 S_1 S_5 S_3 S_4 \\
S_5 S_3 S_4 S_1 S_4 S_5 S_3 S_2 S_6 S_7 \\
S_6 S_5 S_4 S_6 S_7 S_2 S_2 S_7 S_3 S_1 \\
S_7 S_6 S_2 S_1 S_1 \\
S_1
\end{array}
&
\begin{array}{c}
S_2 \\
S_1 S_2 S_7 S_4 S_2 \\
S_7 S_6 S_4 S_5 S_3 S_2 S_7 S_4 S_1 S_1 \\
S_6 S_6 S_4 S_7 S_5 S_3 S_1 S_5 S_3 S_2 \\
S_5 S_3 S_6 S_2 S_2 \\
S_2 \\
\end{array}
&
\begin{array}{c}
S_3 \\
S_2 S_3 S_4 S_6 S_3 \\
S_6 S_4 S_1 S_3 S_7 S_4 S_5 S_6 S_2 S_2 \\
S_4 S_2 S_5 S_6 S_5 S_3 S_7 S_7 S_1 S_1 \\
S_3 S_1 S_7 S_5 S_3 \\
S_3 \\
\end{array}
&
\begin{array}{c}
S_4 \\
S_6 S_4 S_7 S_5 S_4 \\
S_7 S_4 S_2 S_6 S_3 S_1 S_6 S_7 S_5 S_5 \\
S_4 S_2 S_2 S_5 S_7 S_6 S_1 S_1 S_3 S_3 \\
S_2 S_4 S_4 S_3 S_1 \\
S_4 \\
\end{array}
\end{array}[/math]
[math]
\begin{array}{ccc}
\begin{array}{c}
S_5 \\
S_5 S_2 S_7 S_3 S_5 \\
S_3 S_5 S_1 S_4 S_6 S_2 S_2 S_3 S_7 S_7 \\
S_6 S_5 S_6 S_3 S_7 S_2 S_1 S_1 S_4 S_4 \\
S_6 S_4 S_5 S_1 S_5 \\
S_5 \\
\end{array}
&
\begin{array}{c}
S_6 \\
S_2 S_6 S_1 S_6 S_5 \\
S_4 S_3 S_2 S_7 S_1 S_6 S_5 S_2 S_5 S_1 \\
S_4 S_5 S_7 S_3 S_1 S_2 S_4 S_7 S_3 S_6 \\
S_4 S_3 S_7 S_6 S_6 \\
S_6 \\
\end{array}
&
\begin{array}{c}
S_7 \\
S_3 S_1 S_6 S_7 S_7 \\
S_2 S_3 S_3 S_6 S_5 S_4 S_7 S_6 S_1 S_1 \\
S_4 S_6 S_5 S_2 S_1 S_3 S_5 S_4 S_2 S_7 \\
S_4 S_2 S_5 S_7 S_7 \\
S_7 \\
\end{array}
\end{array}
[/math]
Irreducible characters
All irreducible characters have height zero.
Decomposition matrix
[math]\left( \begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{array}\right)[/math]