

March 2013

R. Vacondio (renato.vacondio@unipr.it)

B.D. Rogers (benedict.rogers@manchester.ac.uk)

P.K. Stansby (p.k.stansby@manchester.ac.uk)

P.Mignosa (mignosa@unipr.it)

SWE-

2

Acknowledgements

The development and application ofSWE-SPHysics were partially supported by:

- Flood Risk Management Research Consortium (FRMRC) Phase 2, EPSRC

Grant F020511

- Research Councils UK (RCUK) Research Fellowship

3

Abstract

This guide documents the computer program SWE-SPHysics based on

Smoothed Particle Hydrodynamics theory. The documentation

provides a brief description of the governing equations and the

different numerical schemes used to solve them. FORTRAN code is

provided for one and two-dimensional versions of the model. Post-

processing tools for MATLAB and PARAVIEW visualization are also

provided. Finally, several working examples are documented to enable

the user to test the program and verify that it is installed correctly.

4

Contents

1. INTRODUCTION 6

1.1 Introduction to Shallow Water Equations (SWEs) and the need for a

meshless SPH solver 6

1.2 Equations of Motion 6

1.3 Solving the Shallow Water Equations using SPH 7

1.4 The SPH method and the weighting function (smoothing kernel) 8

1.5 Future Developments 8

2. IMPLEMENTATION 9

2.1 Overall Implementation 9

2.2 Computational efficiency: linked list 9

2.2.1 Changes to accommodate variable smoothing length 9

2.3 Restart runs & checkpointing (repetitive restarts) 9

3. USER’S MANUAL 11

3.1. Installation 12

3.2. Program outline 12

3.2.1. SWE-SPHysicsgen 12

3.2.1.1. Creating compiling options 13

3.2.1.2. Input files 13

3.2.1.3. Output files 13

3.2.1.4. Subroutines 15

3.2.2. SWE-SPHysics 16

3.2.2.1. Input files 16

3.2.2.2. Output files 16

3.2.2.3. Subroutines 17

4. TEST CASES 21

4.1. Running the model 21

4.1.1. Compiling and executing on Linux and Mac OS 21

4.1.2. Compiling and executing on Windows 23

4.2 1-D Test Cases

4.2.1 Test case 1: 1-D Wet-bed Dam break 25

4.2.2 Test case 2: 1-D Dry-bed Dam break 26

4.2.3 Test case 3: 1-D Flow over hump with Inflow-Outflow

Boundaries Conditions 28

4.3 2-D Test Cases

4.3.1 Test case 1: 2-D Thacker Basin – rotating surface 30

4.3.2Test case 2: Tsunami Wave with Inflow-Outflow Boundary

Conditions 33

4.3.3 Test case 3: 2-D Dry-Bed Dam Break with Particle Splitting 35

4.3.4Test case 4: 2-D CADAM Case with 45° Channel 39

5

5. HOW TO CHANGE SWE-SPHysics FOR YOUR APPLICATION 43

5.1 Introduction 43

5.2 Code Structure 44

5.3 Main variables 45

6. VISUALIZATION 46

6.1 Using Matlab 46

6.2 Using Paraview 47

7. REFERENCES 48

8. PUBLICATIONS USING SWE-SPHysics CODE 50

6

1. INTRODUCTION

1.1 Introduction to Shallow Water Equations (SWEs) and the need for a meshless

SPH solver

The two-dimensional shallow-water equations (SWEs) are widely used to approximate

flows for a wide range of rapidly (and slowly) varying free-surface flows, such as dam

breaks, river flooding, and tidal flows including storm surge and wave overtopping

causing inundation in estuaries and coastal regions. Grid-based solvers are now widely

available. Although accurate and robust wetting and drying routines have been

developed, grid-based solvers are limited in simulating multi-phase effects, most

importantly flows with rapid distortion in flood modelling. Particle methods are quite

flexible in this respect and are also naturally adaptive for modelling complex domains.

Here, the SPHysics numerical scheme, originally developed to solve Navier-Stokes

Equations has been extended to shallow water equations.

1.2 Equations of Motion

The shallow water equations (SWEs) represent the depth-integrated equations of mass

and momentum. In order to be solved using SPH, the conservation equations need to be

written in Lagrangian form:

Eulerian Form Langrangian Form

 d
t

⋅∇−= ρ
ρ

d

d

(1.1)

() () ()
fgdbdgdd

t

d
Sv

v
++∇−=⋅∇+

∂

∂
 ()

f

w

bg
t

S
v

+∇+∇−= ρ
ρ

ρ

d

d

(1.2)

where d is depth as plotted in Figure 1.1, v is depth-averaged velocity, t is time, b is the

bottom elevation, g is the acceleration due to gravity and Sf is the bed friction source

term. The SWEs are formally identical to the Euler equations if we re-define the density

ρ as the mass of fluid per unit of area in a 2-D domain; with this definition of ρ we have

ρ = ρwd , where ρw is the constant (conventional) density. The density ρi of a particle i

can vary considerably during a simulation; therefore an SPH scheme with variable

smoothing length h in time and space is used to keep the number of neighbour particles

roughly constant during the processes of water inundation and retreat.

()d
t

d
v⋅∇=

∂

∂

7

Figure 1.1: Flow with a free surface under the effect of gravity.

1.3 Solving the Shallow Water Equations using SPH

The methodology to solve the SWEs using SPH is described in the following papers,

and we encourage you to read and refer to these publications:

Feature Publication

Inlet-outlet (inflow-outflow)

boundaries

Vacondio R, Rogers B D, Stansby P K, Mignosa P. 2012. "SPH

modeling of shallow flow with open boundaries for practical flood

simulation". Journal of Hydraulic Engineering. DOI:

10.1061/(ASCE)HY.1943-7900.0000543

Solid (no-flow) boundaries

Vacondio R, Rogers B D, Stansby P K. 2011. "Smoothed Particle

Hydrodynamics: approximate zero-consistent 2-D boundary

conditions and still shallow water tests". Int. Journal for

Numerical Methods in Fluids. DOI: 10.1002/fld.2559

Particle splitting and variable h Vacondio R, Rogers B D, Stansby P K. 2011. "Accurate particle

splitting for SPH in shallow water with shock capturing". Int.

Journal for Numerical Methods in Fluids. DOI: 10.1002/fld.2646

Water depth (or density evaluation) Vacondio R, Rogers B D, Stansby P K. 2011. "Accurate particle

splitting for SPH in shallow water with shock capturing". Int.

Journal for Numerical Methods in Fluids. DOI: 10.1002/fld.2646

Bed Topography Representation Vacondio R, Rogers B D, Stansby P K, Mignosa P. 2012. "SPH

modeling of shallow flow with open boundaries for practical flood

simulation". Journal of Hydraulic Engineering. DOI:

10.1061/(ASCE)HY.1943-7900.0000543

Viscosity & Stabilisation terms Vacondio R, Rogers B D, Stansby P K. 2011. "Accurate particle

splitting for SPH in shallow water with shock capturing". Int.

Journal for Numerical Methods in Fluids. DOI: 10.1002/fld.2646

Time stepping Vacondio R, Rogers B D, Stansby P K. 2011. "Smoothed Particle

Hydrodynamics: approximate zero-consistent 2-D boundary

conditions and still shallow water tests". Int. Journal for

Numerical Methods in Fluids. DOI: 10.1002/fld.2559

1.4 The SPH method and the weighting function (smoothing kernel)

The main features of the SPH method, which is based on integral interpolants, are

described in detail in the following papers (Monaghan, 1982; Monaghan, 1992; Benz,

8

1990; Liu, 2003; Monaghan, 2005). Herein we will only refer to the representation of

the constitutive equations in SPH notation. In SPH, the fundamental principle is to

approximate any function)(rA by

∫ −= 'd),'()'()(rrrrr hWAA (1.3)

where h is called the smoothing length,),'(hW rr − is the weighting function or kernel,

and denotes approximation. This approximation, in discrete notation, leads to the

following approximation of the function at a particle (interpolation point) i,

),()(hW
A

mA j

j

j

j

j rrr −=∑
ρ

(1.4)

where the summation is over all the particles within the region of compact support of

the kernel function., The mass and density are denoted by mj and ρj respectively and

),(hWW jiij rr −= is the weight function or kernel.

For a more recent review of SPH applied to the Navier-Stokes equations, please see

Gomez-Gesteira et al. (2010).

1.5 Future Developments

As with all developments in the SPHysics project, official code updates are only

released after validation and journal papers are published.

Future developments for SWE-SPHysics includes:

1. Particle coalescing (merging) for efficient simulations (Vacondio et al. 2011b)

2. Correction for step changes in the bed (Vacondio et al. 2013)

9

2. IMPLEMENTATION

2.1 Overall Implementation

SWE-SPHysics was built from the original FORTRAN SPHysics Navier-Stokes solver,

and hence is very similar in structure and operation. For information on the main

solver, users are encouraged to find information in two articles explaining the theory

and implementation, Gomez-Gesteira et al. (2012a,b).

2.2 Computational efficiency: link list.

Similar to the fortran SPHysics code for the Navier-Stokes equations, the computational

domain is divided in square cells of side 2h (see Figure 1 of Gomez-Gesteiraet al.

2012b). Here the only difference is that the smoothing length, h, can vary. Hence,

changes are required to the code.

2.2.1 Changes to accommodate variable smoothing length

To compute both the water depth and the smoothing length for each i-th particle, a

Newton Rapson iterative procedure is implemented in the subroutine ac_dw. The grid

used in the linked-list procedure is equal to 2hmax, where hmax is the maximum

smoothing length in the domain. When hmax is updated the grid needs to be re-defined.

Two link lists are considered in SWE-SPHysics. The first one tracks the open and closed

boundary particles and it is partially upgraded every time step. This is due to the fact

that the only boundary particles that change their position in time are the ones that

describe moving objects. The second link list corresponds to fluid particles and is

completely updated every time step.

An additional link list is built at the beginning of the simulation for the bottom particles,

and this is not updated during the simulation.

2.3. Restart runs & checkpointing (repetitive restarts)

Restarting previous (unfinished) runs is controlled using the RESTART parameter. If

the code is being run on computer clusters, there are sometimes limits as to how long a

particular job can run, e.g. 24 hours. This can be specified when first launching the

SPHysics code by setting the i_restartRun parameter in the Case files.

i_restartRun> 1 is used for Checkpointing = repetitive restarting of code (for

clusters)

so that:

i_restartRun = 0 : Start new run, once only

i_restartRun = 1 : reStart old run, once only

10

11

3. USER’S MANUAL

3.1. Installation

Two versions of SWE-SPHysics are available in this release:

- SWE_SPHysics_1D. The computational domain is 1-D, where x corresponds

to the horizontal direction and z to the vertical direction.

- SWE_SPHysics_2D. The computational domain is 2-D, where x and y are the

horizontal directions and z the vertical direction.

SWE_SPHysics is distributed in a compressed file (gz or zip). The directory tree shown

in Figure 3.1 can be observed after uncompressing the package

Figure 3.1 SWE-SPHysics directory (folder) structure

The following directories can be observed both in 1-D and in 2-D.

source contains the FORTRAN codes. This directory contains two subdirectories:

SPHYSICS_SWE_gen: contains the FORTRAN codes to create the initial

conditions of the run.

SPHYSICS_SWE: contains the FORTRAN source codes of SPH.

execs contains all executable codes.

SWE-SPHysics

source

execs

run_directory

Post-

Processing

 Case1

 CaseN

SPHYSICS_SWE_gen

SPHYSICS_SWE

matlabRoutines

fortranRoutines

⁞

12

run_directory is the directory created to run the model. The different subdirectories

Case1, …, CaseN placed in this directory correspond to the different working cases

to be created by the user. Input and output files are written in these directories

Post-Processing this directory contains codes to visualize results.

3.2. Program Outline

Both the 1-D and 2-D version consist of two general programs:

(i) Geometry Generation using SPHYSICS_SWE_gen

(ii) SPH simulation using SPHYSICS_SWE

These are run separately and in the following order.

1-D Code:

SPHYSICS_SWE_gen_1D: Creates the initial conditions and files for a given

case.

SPHYSICS_SWE_1D: Runs the selected case with the initial conditions created

by SPHYSICS_SWE_gen_1D code.

2-D Code:

SPHYSICS_SWE_gen_2D: Creates the initial conditions and files for a given

case.

SPHYSICS_SWE_2D: Runs the selected case with the initial conditions created

by SPHYSICS_SWE_gen_2D code.

In general, 1-D or 2-D appended to the source file name means that the source is suited

for 1-D or 2-D calculations.

In the remainder of this document, SPHYSICS_SWE_gen and SPHYSICS_SWE,

when used, refer to both the aforementioned 1-D and 2-D programs for convenience.

For example, SPHYSICS_SWE_gen will refer to both SPHYSICS_SWE_gen_1D

and SPHYSICS_SWE_gen_2D.

3.2.1. SPHYSICS_SWE_gen

All subroutines are included in two source files (SPHYSICS_SWE_gen_1D.f or

SPHYSICS_SWE_gen_2D.f), depending on the nature one or two- dimensional of

the calculation. Each source uses global variables where most of the variables are

stored: global_1D.f/global_2D.f. Both versions (1-D and 2-D) can be

compiled by the user with any FORTRAN compiler and the resulting executable file is

placed in subdirectory \execs.

13

SPHYSICS_SWE_gen plays a dual role:

(i) Creating the MAKEFILE to compile SPHysics; and

(ii) Creating the output files that will form the input files to be read by SWE-

SPHysics. These files contain information about the geometry of the domain, the

distribution of particles and the different running options.

In Windows for example, SPHYSICS_SWE_gen.exe can be executed using one of the

following two commands,

1.SPHYSICS_SWE_gen.exe <input_file >output_file

input_file is the general name (any name can be used) of the file containing the

running options. Different examples of input_file will be shown in next section.

output_file is the general name (any name can be used) of the file containing general

information about the run. This file is never read by the rest of the code and only

serves to provide information to the user.

2. SPHYSICS_SWE_gen.exe

In this case, data about the run must then be provided by the user by means of the

keyboard and the information about the run appears on the screen. This option can be

used by beginners to get familiarized with the different options.

3.2.1.1. Creating compiling options

The compilation of SWE-SPHysics code depends on the nature of the problem under

consideration and on the particular features of the run. Thus, the user can chose the

options that are better suited to any particular problem and only those options will be

included in the executable versions of SWE-SPHysics. This protocol speeds up

calculations since the model is not forced to make time consuming logical decisions.

In both 1-D and 2-D the following compiling options can be considered:

i) stabilization term 1 - artificial viscosity, 2 - Lax Friedrichs flux, 3 - two

shocks Riemann solver

ii) 0 - No MUSCL reconstruction, 1 - MUSCL reconstruction

iii) Choice of compilers: (1=gfortran; 2=ifort; 3=win_ifort; 4=Silverfrost

FTN95).

3.2.1.2. Input files

There are potentially three different types of input file:

(i) Case input files (mandatory)

(ii) Bed/Bottom profiles

(iii) Open Boundary Specifications

Different examples of input files(referred to herein as Case files, e.g. Case1.txt) will be

shown in Section 4, where several test cases will be described.

14

3.2.1.3. Output files

As mentioned above, different output files are created by SPHYSICS_SWE_gen.

These files can be used either by the SPHYSICS_SWE executable as input files or by

MATLAB codes to visualize results (different MATLAB codes are provided in /Post-

processing subdirectory.

SPHysics.mak

Compiling file created by the executable SPHYSICS_SWE_gen. It depends on the

running options defined by input_file and can be used for Intel Fortran, Silverfrost

FTN95, ifort and gfortran although it can be adapted to other compilers.

INDAT

Created by SPHYSICS_SWE_gen:

Read by SPHYSICS_SWE code at GETDATA (see Subsection 3.2.2.3).

UNIT=11

The file contains the following variables:

rho0

viscos_val

dw_min_fric

coef

vlx medium extent in x direction

vly medium extent in y direction

np Number of particles at start of simulation

np_b Number of bed particles

npv number of virtual particles

i_openbc

distmin

tol

ivar_dt Activate (10yes,0=no) variable timesteps

dt Initial timestep

CFL Courant number (0.1-0.5)

tmax Length of simulation

out Output interval

trec_ini

i_restartRun

hsm_b_max smoothing length for the bottom particles

n0 max number of particles in one cell

idebug

iMUSCL Activate (10yes,0=no) MUSCL

reconstruction

i_dw_iter

15

i_max_iter

!refining parameters

area_lim*ref_lim limits of area to refine

ref_p position of refined particles (coeff)

ref_h smoothing length of refined particles

dw_min_ref minimum water depth to activate refining

xmin_ref

ymin_ref

dxx_ref

dyy_ref

ncx_ref

ncy_ref

!parameters to export on regular grid

dx_grd

dy_grd

IPART

Created by SPHYSICS_SWE_gen.

Read by SPHYSICS_SWEcode at GETDATA (see subsection 3.2.2.3).

UNIT=13

The file contains the following variables recorded at time=0:

In 1-D version

xp(1) up(1) rhop(1) dw(1) areap(1)

xp(2) up(2) dw(2) areap (2)

……….

xp(np) up(np) dw(np) areap (np)

In 2-D version

xp(1) yp(1) up(1) vp(1) dw(1) areap(1) h_var(1) iflag(1)

xp(2) yp(2) up(2) vp(2) dw(2) areap(2) h_var(2) iflag(2)

……………… ………………..

xp(np) yp(np) up(np) vp(np) dw(np) areap(np) h_var(np) iflag(np)

Description:

xp(i) Position in x direction of particle i.

yp(i) Position in y direction of particle i.

up(i) Velocity in x direction of particle i.

vp(i) Velocity in y direction of particle i.

dw(i)Free-surface elevation of particle i.

areap(i) Area of particle i.

h_var(i) Smoothing Length (h) of particle i.

iflag(i) Flag of particle i.

16

3.2.1.4. Subroutines

All subroutines in SPHYSICS_SWE_gen are inside a single source file

SPHysics_SWE_gen_1D.f or SPHysics_SWE_gen_2D.f

SPHysicsgen Main program.

Subroutine Name Purpose

surface_define Defining initial condition

slopingBed Defining bottom elevation

parabolicBed Defining bottom elevation

read_bedProfile Defining bottom elevation

tocompile_unixStyle Create make file

tocompile_cvf Create make file

3.2.2. SPHYSICS_SWE

The SPHYSICS_SWE executable depends on the compiling option determined by

SPHYSICS_SWE_gen

3.2.2.1. Input files

The input files correspond to the output files generated by SPHYSICS_SWE_gen and

are described in Section 3.2.1.3.

3.2.2.2. Output files

PART_klmn

Created by SPHYSICS_SWE at POUTE_1D.f or POUTE_2D.f with a periodicity in

seconds fixed by the input_file used to run SPHYSICS_SWE_gen.

UNIT=23

The structure of PART_klmn is the same as that of IPART previously described. The

indices k, m, n and l can take any integer value from 0 to 9, in such a way that the

maximum number of images is 9999.

Each PART_klmn file is opened, recorded and closed in each call to POUTE_2D.f or

POUTE_2D.f subroutines, so, a single UNIT=23 is assigned to all PART_klmn files.

GRD_dklmn, GRD_uklmn, GRD_vklmn

These files contain values for water depth, x-direction velocity, y-direction velocity

interpolated to a regular grid of spacing (dx_grd, dy_grd) with nplot_x and nplot_y

points in the x- and y-directions, respectively.

Created by SPHYSICS_SWE subroutines POUTE_GRD_1D.f or

POUTE_GRD_2D.f with the same periodicity as PART_klmn.

UNIT=24

For example, in GRD_dklmn the following variables are recorded:

17

DSAA

nplot_x, nplot_y

0.0, vlx

0.0, vly

0.0, m_dw_grd

dw(1,1) dw (2,1) … dw(nplot_x,1)

dw(1,2) dw (2,2) … dw(nplot_x,2)

…

dw(1,nplot_y) dw (2,nplot_y) … dw(nplot_x,nplot_y)

DT

Created by SPHYSICS_SWE in POUTE_1D.f or POUTE_2D.f

UNIT=19

The following variables are recorded:

time dtnew

Description:

time: Time instant (in seconds)

dtnew: Time step corresponding to next step.

RESTART

Created by SPHYSICS_SWE in SPHYSICS_SWE_1D/2D.f

UNIT=44

The following variables are recorded:

itime time ngrab dt

Description:

itime: Number of iterations since the beginning of the run.

time: Time instant (in seconds).

ngrab: Recording instant.

dt: Time step

3.2.2.3. Subroutines

All subroutines in SPHYSICS_SWE_gen are placed in the same source file, however

SPHYSICS_SWE ones are placed in different source files. A short description of each

possible subroutine follows.

filename subroutine name subroutine

called

called by purpose

ac ac
celij, celij_vir,

celij_ob, self
step

sweeps over

link list grid

to compute

accelerations

ac_alpha ac_alpha

celij_alpha,

celij_alpha_vir,

celij_alpha_ob,

ac_dw

sweeps over

link list grid

to compute

18

self_alpha alpha

ac_b ac_b celij_b_c, celij_b source_slope

sweeps over

link list grid

to compute

bottom

gradient

ac_corr ac_corr
celij_corr,

self_corr
ac_dw

sweeps over

link list grid

to compute

kernel

gradient

correction

ac_dw_var ac_dw

celij_dw,

self_dw,

celij_dw_vir,

celij_dw_ob,

ac_alpha,

ac_corr,

grid_h_var

step

sweeps over

link list grid

to compute d

and h

ac_dw_var_hj ac_dw_hj

celij_dw,

self_dw,

celij_dw_vir,

celij_dw_ob,

ac_alpha,

grid_h_var, loop

step

sweeps over

link list grid

to compute d

and h when

splitting is

activated

bottom bottom celij_hb step

sweeps over

link list grid

to compute

bottom

elevation

celij_alpha celij_alpha kernel ac_alpha

celij_alpha_ob celij_alpha_ob kernel ac_alpha

celij_alpha_vir celij_alpha_vir kernel ac_alpha

celij_b celij_b kernel ac_b

celij_balsara celij
limiter, balsara,

kernel
ac

celij_balsara_ob celij_ob
limiter, balsara,

kernel
ac

celij_b_c celij_b_c kernel ac_b

celij_corr celij_corr kernel ac_corr

celij_dw celij_dw kernel ac_dw

celij_dw_hj celij_dw kernel ac_dw

celij_dw_ob celij_dw_ob kernel ac_dw

celij_dw_vir celij_dw_vir kernel ac_dw

celij_hb celij_hb kernel bottom

celij_ob celij_ob kernel, viscosity ac

celij_vir celij_vir kernel, viscosity ac

celij_vir_balsara celij_vir
limiter, balsara,

kernel
ac

celij_visc celij
limiter, kernel,

viscosity
ac

check_limits check_limits

new_ob_flp,

new_fl_ob,

new_bcp

step, sph

divide divide

step Link – list

19

creation for

fluid

particles

divide_b divide_b

sph

Link – list

creation for

bottom

particles

divide_ob divide_ob

sph

Link – list

creation for

open

boundary

particles

divide_vir divide_vir

sph

Link – list

creation for

virtual

particles

getdata getdata

sph
Reads the

initial data

grid_h_var grid_h_var

ini_divide,

divide,

divide_vir,

divide_ob

ac_dw

Creation of

hte 2h grid

with size

hmax

ini_divide ini_divide

grid_h_var

interp_openbc interp_openbc

step

Interpolates

open

boundary

condition

kernel_cubic kernel_cubic

Any self*.f and

celij*.f

subroutines

Cubic kernel

limiter_minmod

celij_visc,

celij_balsara,

self_visc,

self_balsara

Minmod

limiter

limiter_noMUSCL

celij_visc,

celij_balsara,

self_visc,

self_balsara

No limiter

loop loop

ac_dw

Optimization

o the d and h

calculation

when

splitting is

activated

open_bc open_bc

sph, step

Updates

physical

quantities in

the buffer

zones

open_bc_pos open_bc_pos

step

Updates

open

boundary

particle

velocities

and positions

poute poute

sph
Output

PART*f iles

poute_grid poute_grid

sph
Oputput in

*.grd files

20

recount recount

step

refinement refinement

sph
Split

particles

refinement_v refinement_v

sph

Compute the

velocity of

split particles

riemann_balsara balsara

celij_balsara,

celij_balsara_o

b,

celij_vir_balsar

a, self_balsara

Balsara

stabilization

method

self_alpha self_alpha kernel ac_alpha

self_alpha_hj self_alpha kernel ac_alpha

self_balsara self_balsara
limiter, balsara,

kernel
ac

self_corr self_corr kernel ac_corr

self_dw celij_dw kernel ac_dw

self_dw_hj celij_dw kernel ac_dw

self_visc celij
limiter, kernel,

viscosity
ac

source_slope source_slope ac_b step

Compute

gradient of

the bed

elevation,

and fiction

source term

SPHYSICS_SWE_2D sph

ini_divide,

divide_b,

divide_ob,

divide_vir,

getdata,

check_limits

Main

step_leap_frog step

variable_time_ste

p, ac,

source_slope,

interp_openbc,

open_bc_pos,

refinement,

ini_divide,

divide,

divide_vir,

divide_ob,

check_limits,

recount, bottom,

ac_dw, open_bc,

refinement_v

variable_time_step
variable_time_st

ep
step

CFL

condition to

compute

timestep

viscosity_artifici

al
viscosity

celij_ob,

celij_vir, celij,

self

Artificial

viscosity

viscosity_LF viscosity

celij_ob,

celij_vir, celij,

self

Lax-

Friedrichs

flux

21

4. TEST CASES

4.1. Running the model

Creating and running executable files can be done step by step by the user (compiling

the different source files, putting them in a certain directory and executing the codes

while typing the values of the different variables and options when prompted).

Nevertheless, this process can become tedious, especially when running different

realizations of the same case with small differences in a small number of parameters.

The entire process can be automatically done, although with some differences on

different computer systems. Here we will show two examples for WINDOWS and

LINUX.

NOTE: the default Compiler chosen is INTEL IFORT for WINDOWS, which is option

3 near the end of each Case file.

4.1.1. Compiling and executing on Linux

SPHYSICS_SWE also currently supports the following fortran compilers that have

been tested on Linux platforms,

1. gfortran, a free Fortran 95/2003 compiler that can be downloaded from

http://gcc.gnu.org/wiki/GFortran.

2. The non-commercial Intel ® Fortran Compiler can be downloaded from

http://www.intel.com website.

In order to run SPHYSICS_SWEon Linux, gfortran, ifort and the GNU make utility

need to be installed and available in the default search path (typically /usr/bin or

/usr/local/bin). The following paragraphs explain the procedure to compile and run the

2D version of SPHYSICS_SWE. The procedure is exactly the same for the 1-D version.

Compiling SPHYSICS_SWE_gen

In the SWE-SPHysics_2D/source/SPHYSICS_SWE_gen_2D directory there are

two Makefiles named SPHysicsgen_gfortran.makand SPHysicsgen_ifort.mak. As

their names suggest, they are used to compileSPHYSICS_SWE_genusing the

gfortran and ifort compilers respectively. The gfortran Makefile can be executed

using the command 'make -f Makefile_gfortran.mak'. The Makefile,

1. compiles SPHYSICS_SWE_gen

2. checks for existence of SPHysics_2D/execs and SWE-

SPHysics_2D/execs.bak directories. If non-existent these directories are

created.

3. moves the previous version of the SPHYSICS_SWE_gen executable, if

available, from the execs directory to execs.bak directory

22

4. moves the latest compiled version of SPHYSICS_SWE_gen to the execs

directory.

Running SPHYSICS_SWE_gen_2D and SPHYSICS_SWE_2D

As mentioned before, SPHYSICS_SWE_gen_2D, based on the options chose by the

user, generates the Makefile, SPHysics.mak, to compile the main program SPHysics.

The subroutines tocompile_gfortran and tocompile_ifort, in

SPHYSICS_SWE_gen_2D, write out SPHysics.mak for gfortran and ifort

compilers respectively.

There are linux batch files located in the four 2D example directories,

run_directory/CaseN, where N=1,2,3,4. These batch files are named

CaseN_unix_gfortran.bat (N=1,2,3,4) . Similar linux batch files are located in

the 2D example directories.

The following table gives a detailed description of the commands used in the script file

Case1_unix_gfortran.bat which is located in SWE-

SPHysics_2D/run_directory/Case1. This batch file can be executed, while in

the Case1 directory, by typing Case1_unix_gfortran.bat at the command prompt.

COMMAND COMMENTS

cd ../../source/ SPHYSICS_SWE_gen_2D/

Change to source directory in order to

compile SPHysicsgen using

SPHysicsgen.mak

make -f SPHYSICS_SWE_gen_gfortran.mak

clean

Remove any preexisting object files

make -f SPHYSICS_SWE_gen_gfortran.mak Compile and generate

SPHYSICS_SWE_gen_2D using

SPHysicsgen.mak. This Makefile

compiles and places the

SPHysicsgen_2D executable in the

execs directory and moves the older

executable to the execs.bak

directory.

cd ../../run_directory/Case1 Change to the Case1 example directory.

../../execs/ SPHYSICS_SWE_gen_2D<

Case1.txt > Case1.out

Run SPHYSICS_SWE_gen_2D with

Case1.txt as the input file instead of

command line input. The output from

the execution is redirected in Case1.out

23

cp SPHysics.mak

../../source/SPHYSICS_SWE_2D

Copy the generated Makefile to the

SPHysics2D source directory.

cd ../../source/SPHYSICS_SWE_2D Change to source directory in order to

compile SWE-SPHysics using

SPHysics.mak

make -f SPHysics.mak clean Remove any preexisting object files

make -f SPHysics.mak Compile and generate

SPHYSICS_SWE_2D using

SPHysics.mak. Similar to the Makefiles

for SPHYSICS_SWE_gen_2D, this

Makefile compiles and places the

SPHYSICS_SWE_2Dexecutable in the

execs directory and moves the older

executable to the execs.bak directory

rm SPHysics.mak Remove the Makefile from the source/

SPHYSICS_SWE_2D directory.

cd ../../run_directory/Case1 Change to the Case1 example directory.

../../execs/SPHYSICS_SWE_gen_2D Execute SPHysics_2D and direct the

output from the run to sph.out

4.1.2. Compiling and executing on Windows.

In the SWE-SPHysics_2D/source/SPHYSICS_SWE_gen_2D directory there are

two Makefiles named SPHysicsgen_win_ifort.mak and SPHysicsgen_ftn95.mak.

Theyare used to compile SPHYSICS_SWE_gen_2D using the INTEL IFORT

compiler and Silverfrost FTN95 compiler (previously Salford Fortran).

As mentioned before, SPHYSICS_SWE_gen_2D, based on the options chose by the

user, generates the Makefile, SPHysics.mak, to compile the main program SPHysics.

The subroutine tocompile_windows and tocompile_ftn95, in

SPHYSICS_SWE_gen_2D, write out SPHysics.mak for ifortand silverfrost ftn95

compilers respectively.

There are windows batch files located in the example directories. The batch file

Case1_windows_ifort.bat located in SWE-SPHysics_2D\run_directory\Case1

(see Fig. 3.1) is used. Similar batch files correspond to other 2D examples. Examples

corresponding to 1D calculations can be found in SWE-

SPHysics_1D\run_directory\Case1

24

The user should, while in the Case1 directory, write Case1_windows_ifort.bat on a

command window. The content of this file is briefly describe in next table.

COMMAND COMMENTS

del *.exe Remove previous executable files.

cd ..\..\source\SPHYSICS_SWE_gen_2D

Change to the directory

containing the

SPHYSICS_SWE_gen_2Dsource files

NMAKE/f"SPHYSICS_SWE_gen_win_ifort.m

ak"

NMAKE /f "SPHysicsgen.mak" is

used to compile

SPHYSICS_SWE_gen_2D.exe.

cd ..\..\ run_directory\Case1 Change directory

copy..\..\execs\ SPHYSICS_SWE_gen_2D.exe

SPHYSICS_SWE_gen_2D.exe

Copy SPHYSICS_SWE_gen_2D.exe

file to the working directory.

SPHYSICS_SWE_gen_2D.exe <Case1.txt >

Case1.out

Run SPHYSICS_SWE_gen_2D.exe.

This program creates the initial

conditions and select the options of

the run. In addition, it also creates a

file SPHysics.mak that can be used to

compile the SPHYSICS_SWE_2Dcode

with the right options.

Any name can be used for the input

and output files

copy SPHysics.mak

..\..\source\SPHYSICS_SWE_2D\SPHysics.mak

Copy the SPHysics.mak file to the

place where the

SPHYSICS_SWE_2Dsource files are

located.

cd ..\..\execs\ Change to the directory where the

executable file will be created.

del *.obj Remove previous object files

del SPHYSICS_SWE_2D.exe Remove previous executable versions

of SPHYSICS_SWE_2D.exe

cd..\source\ SPHYSICS_SWE_2D Change to the directory containing the

SPHYSICS_SWE_2Dsource files

NMAKE /f "SPHysics.mak" NMAKE /f "SPHysics.mak" is used to

compile SPHysics_2D.exe. There are

multiple options to compile

SPHYSICS_SWE_2D.exe. They are

automatically selected depending on

the initial conditions provided by the

25

input file (Case1.txt in this example).

The file SPHysics.mak, which is

automatically created by

SPHYSICS_SWE_gen_2D.exe,

contains information about those

options.

cd ..\..\ run_directory\Case1 Change directory

copy ..\..\execs\ SPHYSICS_SWE_2D.exe

SPHYSICS_SWE_2D.exe

Copy SPHYSICS_SWE_2D.exe file to

the working directory

SPHYSICS_SWE_2D.exe >sph.out Run the case.

Any name can be used for the output

file sph.out

4.2. 1-D Test Cases

4.2.1 Test case 1: 1D Wet-bed Dam break

The case can be run using Case1.bat: (Case1_windows_ifort.bat,

Case1_windows_ftn95.bat, Case1_unix_gfortran.bat or

Case1_unix_ifort.bat) whose output directory is Case1. The input file Case1.txt is

located in the output directory. The information contained in that file can be

summarized as follows:

Figure 4.1: Initial configuration of Case1.

0 Choose Starting options: 0=new, 1=restart

0 debug activated: 1 - for yes (detailed output at every timestep) 0 for no

1000. fluid density (1000 kg/m3 for water)

2

stabilization term 1 - artificial viscosity, 2 - Lax Friedrich's flux, 3 - two shocks

Riemann solver

2. valule of alpha (useful just for artificial viscosity)

0 0 - No MUSCL reconstruction, 1 - MUSCL reconstruction

1.E-3 tolerance in the Newton - Raphson algorithm (suggested 1.E-3)

1 number of time steps for Newton - Raphson iterative procedure (suggested 10)

50 maximum number of iterations in the Newton - Raphson iterative procedure

1 variable time step: 1 for yes, 2 for no

26

10. time step, or maximum time step if variable time step activated

0.4 Courant number

10. output interval (seconds)

50.1 End of the simulation (seconds)

0. time step for intitial output (seconds)

1.2 smoothing length coefficient: h=dx*coef (suggested 1.2)

2000. length of the domain (m)

0 open boundaries: 0 =no, 2 =downstream, 1 =upstream, 3=both

1 Choose Bed Profile: 1=Plane Slope

10. Distance between bottom particles (m)

0. from 0 to xini the bottom is flat, xini (m)

0. initial beach elevation between 0 and xini (m)

0. beach slope (degree)

0. x-coordinate for the beginning of the block

1000. x-coordinate for the end of the block

10. water surface elevation at the beginning of the block

10. water surface elevation at the end of the block

0. velocity at the beginning of the block

0. velocity at the end of the block

10. particle spacing for this block

1 adding another block

1000. x-coordinate for the beginning of the block

2000. x-coordinate for the end of the block

5. water surface elevation at the beginning of the block

5. water surface elevation at the end of the block

0. velocity at the beginning of the block

0. velocity at the end of the block

20. particle spacing for this block

0 adding another block

1 Which compiler is desired? (1=gfortran, 2=ifort, 3=CVF, 4=Silv

1 1 for single precision, 2 for double precision

Figure 4.2: Velocity and Depth plots for Case1.

4.2.2. Test case 2: 1D Dry-bed Dam break

The case can be run using Case2.bat whose output directory is Case2. The input file

Case2_DryBed_DamBreak.txt is located in the output directory. The information

contained in that file can be summarized as follows:

27

0 Choose Starting options: 0=new, 1=restart

0 debug activated: 1 - for yes (detailed output at every timestep) 0 for no

1000. fluid density (1000 kg/m3 for water)

2

stabilization term 1 - artificial viscosity, 2 - Lax Friedrich, 3 - two shocks Riemann

solver

2. valule of alpha (useful just for artificial viscosity)

1 0 - No MUSCL reconstruction, 1 - MUSCL reconstruction

1.E-3 tolerance in the Newton - Raphson algorithm (suggested 1.E-3)

1 number of time steps for Newton - Raphson iterative procedure (suggested 10)

50 maximum number of iterations in the Newton - Raphson iterative procedure

1 variable time step: 1 for yes, 2 for no

10. time step, or maximum time step if variable time step activated

0.4 Courant number

10. output interval (seconds)

50.1 End of the simulation (seconds)

0. time step for intitial output (seconds)

1.2 smoothing length coefficient: h=dx*coef (suggested 1.2)

2000. length of the domain (m)

0 open boundaries: 0 =no, 2 =downstream, 1 =upstream, 3=both

1 Choose Bed Profile: 1=Plane Slope

10. Distance between bottom particles (m)

0. from 0 to xini the bottom is flat, xini (m)

0. initial beach elevation between 0 and xini (m)

0. beach slope (degree)

0. x-coordinate for the beginning of the block

1000. x-coordinate for the end of the block

10. water surface elevation at the beginning of the block

10. water surface elevation at the end of the block

0. velocity at the beginning of the block

0. velocity at the end of the block

10. particle spacing for this block

0 adding another block

1 Which compiler is desired? (1=gfortran, 2=ifort, 3=win_ifort, 4=Silverfost)

1 1 for single precision, 2 for double precision

Figure 4.3: Case2 water depths using Lax-Friedrich stabilization terms (Vacondio et al.

2011b) t = 10, 20, 30, 50 s.

28

Figure 4.4:Case2 depth-averaged velocities using Lax-Friedrich stabilization terms

(Vacondio et al. 2012a) t = 10, 20, 30, 50 s.

4.2.3 Test case 3: 1-D Flow over a hump with Inflow-Outflow Boundary

Conditions

The case can be run using Case3.bat whose output directory is Case3. The input file

Case3.txt is located in the output directory.

Note: There are THREE test cases here demonstrating the effects of changing the

outflow boundary conditions (see README file).

1. Case3a - Transcritical Flow

Sub-critical inflow & Sub-critical outflow

2. Case3b - Transcritical Flow

Sub-critical inflow & Super-critical outflow

3. Case3c - Super-critical Flow

Super-critical inflow & Super-critical outflow

DEFAULT input file is Case3a.txt

ALL .bat files load Case3.txt, so to run

(i) Case3a COPY Case3a.txt to Case3.txt

(ii) Case3b COPY Case3b.txt to Case3.txt

(iii) Case3c COPY Case3c.txt to Case3.txt

The information contained in that file can be summarized as follows:

29

0 Choose Starting options: 0=new, 1=restart

0 debug activated: 1 - for yes (detailed output at every timestep) 0 for no

1000. fluid density (1000 kg/m3 for water)

2

stabilization term 1 - artificial viscosity, 2 - Lax Friedrich's flux, 3 - two shocks

Riemann solver

2. valule of alpha (useful just for artificial viscosity)

1 0 - No MUSCL reconstruction, 1 - MUSCL reconstruction

1.E-3 tolerance in the Newton - Raphson algorithm (suggested 1.E-3)

1 number of time steps for Newton - Raphson iterative procedure (suggested 10)

50 maximum number of iterations in the Newton - Raphson iterative procedure

1 variable time step: 1 for yes, 2 for no

10. time step, or maximum time step if variable time step activated

0.4 Courant number

1. output interval (seconds)

50.1 End of the simulation (seconds)

0. time step for intitial output (seconds)

1.2 smoothing length coefficient: h=dx*coef (suggested 1.2)

10. length of the domain (m)

3 open boundaries: 0 =no, 2 =downstream, 1 =upstream, 3=both

2 kind of open boundary upstream: 2 for inflow or 3 - for outflow

0.05 dx for upstream bc (m)

0.1 water surface elevation for upstream bc (m)

4. velocity for upstream bc (m/s)

5 kind of open boundary downstream: 4 for inflow or 5 - for outflow

0.05 dx for downstream bc (m)

0.1 water surface elevation for downstream bc(m)

4. velocity for downstream bc (m/s)

2 Choose Bed Profile 2 - Parabolic

0.05 distance between bottom particles (m)

5 parabola equation y-y0=h0*[(x-x0)/a]**2, x0 parameter (m)

0.2 parabola equation y-y0=h0*[(x-x0)/a]**2, y0 parameter (m)

2. parabola equation y-y0=h0*[(x-x0)/a]**2, a parameter (m)

-0.2 parabola equation y-y0=h0*[(x-x0)/a]**2, h0 parameter (m)

0 x-coordinate for the beginning of the block (m)

10 x-coordinate for the end of the block (m)

0.3 water surface elevation at the beginning of the block (m)

0.3 water surface elevation at the end of the block (m)

4. velocity at the beginning of the block (m/s)

4. velocity at the end of the block (m/s)

0.05 particle spacing for this block (m)

0 Add another block (1=yes)

1 Which compiler is desired? (1=gfortran, 2=ifort, 3=win_ifort, 4=Silverfrost)

30

(a)

(b)

(c)

Figure 4.5 Inflow-Outflow over a hump (a) transcritical flow, (b) subcritical inflow &

supercritical outflow, (c) supercritical inflow & outflow (Vacondio et al. 2012b)

4.3. 2-D Test Cases

4.3.1 Test case 1: 2-D Thacker Basin – rotating surface

Thacker (1981) provides analytical solutions for shallow water flow in basins. This test

case simulated by Vacondio et al. (2012a) shows good agreement with the analytical

solution for an initially sloping water surface rotating around a parabolic basin.

31

Figure 4.6: Case4 2-D Thacker Basin (Vacondio et al., 2012a), water surface and

contours

0 Choose Starting options: 0=new, 1=restart

0 debug activated: 1 - for yes (output at every timestep) 0 for no

1000. fluid density (1000 kg/m3 for water)

2 stabilization term 1 - artificial viscosity, 2 - Lax Friedrichs flux, 3 - two shocks Riemann solver

2. value of alpha (useful just for artificial viscosity)

0.001 minimum depth for the friction source term

1 0 - No MUSCL reconstruction, 1 - MUSCL reconstruction

1.E-3 tolerance in the Newton - Raphson algorithm (suggested 1.E-3)

10 number of time steps for Newton - Raphson iterative procedure (suggested 10)

50 maximum number of iterations in the Newton - Raphson iterative procedure

1 variable time step: 1 for yes, 2 for no

10. time step, or maximum time step if variable time step activated

0.4 Courant number

67.5 output interval (seconds)

1350.1 End of the simulation (seconds)

0. time step for intitial output (seconds)

1.2 smoothing length coefficient: h=dx*coef (suggested 1.2)

10000. x length of the domain (m)

32

10000. y - length of the domain (m)

60. x size of the regular grid for output

60. y size of the regular grid for output

0 open boundaries: 1 for yes, 0 for no

0 Closed boundaries: 1 for yes, 0 for no

2 Choose Bed Profile 2 = Parabolic basin

3000. Eq. is y=h0*(x**2+y**2)/a**2, parameter a:

10. Eq. is y=h0*(x**2+y**2)/a**2, parameter h0:

10000. length of the domain

10000. heigth of the domain

50. bottom particle spacing

1.2 coefficient for the smoothing length (sugg. 1.2)

0. manning coefficient

1 Choose fluid particle distribution 1 square blocks, 2 circular distribution

3000. initial position of the block, x - coord

0. initial position of the block, y - coord

7000. length of the block

10000. heigth of the block

0.83333 water surface elevation at South - West (m)

2.416.667 water surface elevation at South - East (m)

0.83333 water surface elevation at North - West (m)

2.416.667 water surface elevation at North - East (m)

0. x - velocity component at South - West (m)

0. x - velocity component at South - East (m)

0. x - velocity component at North - West (m)

0. x - velocity component at North - East (m)

-700.357 y - velocity component at South - West (m)

-700.357 y - velocity component at South - East (m)

-700.357 y - velocity component at North - West (m)

-700.357 y - velocity component at North - East (m)

50. particle spacing for this block (m)

0 Add another block (1=yes)

0 refinement procedure 1 for yes 0 for no

120 size of the grid for refinement along x direction (m)

120 size of the grid for refinement along y direction (m)

0.00 minimum water depth for splitting (m)

1 Which compiler is desired? (1=gfortran, 2=ifort, 3=win_ifort, 4=Silverfrost FTN95)

1 1 for single precision, 2 for double precision

4.3.2 Test case 2: 2-D Tsunami Wave with Inflow-Outflow Boundary Conditions

1993 Okushiri tsunami

The Okushiri tsunami in 1993 produced flooding of the coast near Monai, Japan, and

was later investigate by a physical model built to 1:400 scale with dimensions 5.448 ×

3.402 m. The incoming wave was induced in the wave tank by a mechanical paddle

placed at x=0 andthe water elevation was measured by three gauges at locations: (4.521,

1.196), (4.521, 1.696) and (4.521, 2.196). The experimental data are available until the

reflected wave reaches thepaddle (22.5 s after the beginning of the experiment). The

registereddatasets are available at the Third International Workshop on Long Wave

Run-up Models (2004) website.

This test case has been simulated by Vacondio et al. (2012b) and includes a number of

difficult aspects: open and closed boundaries, irregular bathymetry, wetting and drying

fronts and complex shape of the reflected waves.

33

Figure 4.7: Case4 2-D Tsunami with Inflow-Outflow open boundaries (Vacondio et al.

2012b) Water surface and contour snapshots

0 Choose Starting options: 0=new, 1=restart

0 debug activated: 1 - for yes (output at every timestep) 0 for no

1000. fluid density (1000 kg/m3 for water)

2 stabilization term 1 - artificial viscosity, 2 - Lax Friedrichs flux, 3 - two shocks Riemann solver

2. valule of alpha (useful just for artificial viscosity)

0.001 minimum depth for the friction source term

1 0 - No MUSCL reconstruction, 1 - MUSCL reconstruction

1.E-3 tolerance in the Newton - Raphson algorithm (suggested 1.E-3)

1 number of time steps for Newton - Raphson iterative procedure (suggested 10)

50 maximum number of iterations in the Newton - Raphson iterative procedure

1 variable time step: 1 for yes, 2 for no

10. time step, or maximum time step if variable time step activated

0.4 Courant number

0.2 output interval (seconds)

22.51 End of the simulation (seconds)

0. time step for intitial output (seconds)

1.2 smoothing length coefficient: h=dx*coef (suggested 1.2)

34

5.448 x length of the domain (m)

3.402 y - length of the domain (m)

0.01 x size of the regular grid for output

0.01 y size of the regular grid for output

1 open boundaries: 1 for yes, 0 for no

0.009375 minimum distance between particles in the buffer zone (m)

1 number of boundary conditions

3 kind of open boundary condition: 2 for inflow, 3 for outflow

0. x-coordinate for the beginning of the openbc (m)

0. y-coordinate for the beginning of the openbc (m)

3.402 length of the bc (m)

1. x - coord of the unit vector normal to the bc

0. y - coord of the unit vector normal to the bc

1. 1 if z is exiting from the plane x-y, -1 if it is entering in the plane x-y

0.01875 dx for open boundary particles (m)

1 steady bc 0 for yes, 1 for no

tsunami_obc filename with open boundaries

1 closed boundaries: 1 for yes, 0 for no

1 do you want to add a straight closed boundary? 1 for yes

0. starting point x - coord (m)

0. starting point y - coord (m)

1 marker starting point

5.448 endpoint x - coord (m)

0. endpoint y - coord (m)

1 marker endpoint point

0.009375 distance between virtual particles (sugg. 0.5 dx)

0. unit vector pointing inside the domain, x coord

1. unit vector pointing inside the domain, y coord

1 closed boundaries: 1 for yes, 0 for no

0. starting point x - coord (m)

3.402 starting point y - coord (m)

1 marker starting point

5.448 endpoint x - coord (m)

3.402 endpoint y - coord (m)

1 marker endpoint point

0.009375 distance between virtual particles (sugg. 0.5 dx)

0. unit vector pointing inside the domain, x coord

-1. unit vector pointing inside the domain, y coord

1 closed boundaries: 1 for yes, 0 for no

5.448 starting point x - coord (m)

0. starting point y - coord (m)

1 marker starting point

5.448 endpoint x - coord (m)

3.402 endpoint y - coord (m)

1 marker endpoint point

0.009375 distance between virtual particles (sugg. 0.5 dx)

-1. unit vector pointing inside the domain, x coord

0. unit vector pointing inside the domain, y coord

0 do you want to add another closed boundary? 1 for yes 0 for no

0 do you want to add a circular closed boundary 0 for no

3 Choose Bed Profile 3 = Load Bed Profile from File

tsunami_bed Enter filename of Bed Profile

1 Choose fluid particle distribution 1 = square blocks

0. initial position of the block, x - coord

0. initial position of the block, y - coord

5.448 length of the block

3.402 heigth of the block

.13535 water surface elevation at South - West (m)

.13535 water surface elevation at South - East (m)

.13535 water surface elevation at North - West (m)

.13535 water surface elevation at North - East (m)

35

0. x - velocity component at South - West (m)

0. x - velocity component at South - East (m)

0. x - velocity component at North - West (m)

0. x - velocity component at North - East (m)

0. y - velocity component at South - West (m)

0. y - velocity component at South - East (m)

0. y - velocity component at North - West (m)

0. y - velocity component at North - East (m)

0.01875 particle spacing for this block (m)

0 Add another block (1=yes)

0 refinement procedure 1 for yes 0 for no

0.02 size of the grid for refinement along x direction (m)

0.02 size of the grid for refinement along y direction (m)

0.001 minimum water depth for splitting (m)

1 Which compiler is desired? (1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95)

1 1 for single precision, 2 for double precision

4.3.3. Test case 3: 2-D Dry-Bed Dam Break with Particle Splitting

Figure 4.8: Case4 2-D Dam Break from University of Parma with particle splitting at

dam exit: Water surface and velocity vector snapshots

0 Choose Starting options: 0=new, 1=restart

0 debug activated: 1 - for yes (output at every timestep) 0 for no

36

1000. fluid density (1000 kg/m3 for water)

2 stabilization term 1 - artificial viscosity, 2 - Lax Friedrichs flux, 3 - two shocks Riemann solver

2. valule of alpha (useful just for artificial viscosity)

0.001 minimum depth for the friction source term

1 0 - No MUSCL reconstruction, 1 - MUSCL reconstruction

1.E-3 tolerance in the Newton - Raphson algorithm (suggested 1.E-3)

1 number of time steps for Newton - Raphson iterative procedure (suggested 10)

50 maximum number of iterations in the Newton - Raphson iterative procedure

1 variable time step: 1 for yes, 2 for no

10. time step, or maximum time step if variable time step activated

0.4 Courant number

0.1 output interval (seconds)

5.01 End of the simulation (seconds)

0. time step for intitial output (seconds)

1.2 smoothing length coefficient: h=dx*coef (suggested 1.2)

2.60 x length of the domain (m)

1.20 y - length of the domain (m)

0.015 x size of the regular grid for output

0.015 y size of the regular grid for output

0 open boundaries: 1 for yes, 0 for no

1 closed boundaries: 1 for yes, 0 for no

1 do you want to add a straight closed boundary? 1 for yes

0. starting point x - coord (m)

0. starting point y - coord (m)

1 marker starting point

0.8 endpoint x - coord (m)

0. endpoint y - coord (m)

1 marker endpoint point

0.0075 distance between virtual particles (sugg. 0.5 dx)

0. unit vector pointing inside the domain, x coord

1. unit vector pointing inside the domain, y coord

1 do you want to add another closed boundary? 1 for yes 0 for no

0.825 starting point x - coord (m)

0. starting point y - coord (m)

1 marker starting point

2.60 endpoint x - coord (m)

0. endpoint y - coord (m)

1 marker endpoint point

0.0075 distance between virtual particles (sugg. 0.5 dx)

0. unit vector pointing inside the domain, x coord

1. unit vector pointing inside the domain, y coord

1 do you want to add another closed boundary? 1 for yes 0 for no

2.60 starting point x - coord (m)

0. starting point y - coord (m)

1 marker starting point

2.60 endpoint x - coord (m)

1.20 endpoint y - coord (m)

1 marker endpoint point

0.0075 distance between virtual particles (sugg. 0.5 dx)

-1. unit vector pointing inside the domain, x coord

0. unit vector pointing inside the domain, y coord

1 do you want to add another closed boundary? 1 for yes 0 for no

2.60 starting point x - coord (m)

1.20 starting point y - coord (m)

1 marker starting point

0.825 endpoint x - coord (m)

1.20 endpoint y - coord (m)

1 marker endpoint point

0.0075 distance between virtual particles (sugg. 0.5 dx)

0. unit vector pointing inside the domain, x coord

-1. unit vector pointing inside the domain, y coord

1 do you want to add another closed boundary? 1 for yes 0 for no

0.8 starting point x - coord (m)

37

1.20 starting point y - coord (m)

1 marker starting point

0. endpoint x - coord (m)

1.20 endpoint y - coord (m)

1 marker endpoint point

0.0075 distance between virtual particles (sugg. 0.5 dx)

0. unit vector pointing inside the domain, x coord

-1. unit vector pointing inside the domain, y coord

1 do you want to add another closed boundary? 1 for yes 0 for no

0. starting point x - coord (m)

1.20 starting point y - coord (m)

1 marker starting point

0. endpoint x - coord (m)

0. endpoint y - coord (m)

1 marker endpoint point

0.0075 distance between virtual particles (sugg. 0.5 dx)

1. unit vector pointing inside the domain, x coord

0. unit vector pointing inside the domain, y coord

1 do you want to add another closed boundary? 1 for yes 0 for no

0.8 starting point x - coord (m)

0. starting point y - coord (m)

1 marker starting point

0.8 endpoint x - coord (m)

0.45 endpoint y - coord (m)

0 marker endpoint point

0.0075 distance between virtual particles (sugg. 0.5 dx)

-1. unit vector pointing inside the domain, x coord

0. unit vector pointing inside the domain, y coord

1 do you want to add another closed boundary? 1 for yes 0 for no

0.8 starting point x - coord (m)

0.75 starting point y - coord (m)

0 marker starting point

0.8 endpoint x - coord (m)

1.2 endpoint y - coord (m)

1 marker endpoint point

0.0075 distance between virtual particles (sugg. 0.5 dx)

-1. unit vector pointing inside the domain, x coord

0. unit vector pointing inside the domain, y coord

1 do you want to add another closed boundary? 1 for yes 0 for no

0.825 starting point x - coord (m)

0.75 starting point y - coord (m)

0 marker starting point

0.825 endpoint x - coord (m)

1.2 endpoint y - coord (m)

1 marker endpoint point

0.0075 distance between virtual particles (sugg. 0.5 dx)

+1. unit vector pointing inside the domain, x coord

0. unit vector pointing inside the domain, y coord

1 do you want to add another closed boundary? 1 for yes 0 for no

0.825 starting point x - coord (m)

0. starting point y - coord (m)

1 marker starting point

0.825 endpoint x - coord (m)

0.45 endpoint y - coord (m)

0 marker endpoint point

0.0075 distance between virtual particles (sugg. 0.5 dx)

1. unit vector pointing inside the domain, x coord

0. unit vector pointing inside the domain, y coord

1 do you want to add another closed boundary? 1 for yes 0 for no

0.8 starting point x - coord (m)

0.45 starting point y - coord (m)

0 marker starting point

38

0.825 endpoint x - coord (m)

0.45 endpoint y - coord (m)

0 marker endpoint point

0.0075 distance between virtual particles (sugg. 0.5 dx)

0. unit vector pointing inside the domain, x coord

1. unit vector pointing inside the domain, y coord

1 do you want to add another closed boundary? 1 for yes 0 for no

0.8 starting point x - coord (m)

0.75 starting point y - coord (m)

0 marker starting point

0.825 endpoint x - coord (m)

0.75 endpoint y - coord (m)

0 marker endpoint point

0.0075 distance between virtual particles (sugg. 0.5 dx)

0. unit vector pointing inside the domain, x coord

-1. unit vector pointing inside the domain, y coord

0 do you want to add another closed boundary? 1 for yes 0 for no

0 do you want to add a circular closed boundary 0 for no

1 Choose Bed Profile 1 = flat bed in blocks

0. initial position of the block, x - coord

0. initial position of the block, y - coord

2.60 length of the block

1.20 heigth of the block

0.015 bottom particle spacing

1.2 coefficient for the smoothing length (sugg. 1.2)

0.007 manning coefficient of the block

0. constant elevation of the block

0 do you want to add another block 1 for yes

1 Choose fluid particle distribution 1 = square blocks

0. initial position of the block, x - coord

0. initial position of the block, y - coord

0.8 length of the block

1.2 heigth of the block

0.15 water surface elevation at South - West (m)

0.15 water surface elevation at South - East (m)

0.15 water surface elevation at North - West (m)

0.15 water surface elevation at North - East (m)

0. x - velocity component at South - West (m)

0. x - velocity component at South - East (m)

0. x - velocity component at North - West (m)

0. x - velocity component at North - East (m)

0. y - velocity component at South - West (m)0.7975

0. y - velocity component at South - East (m)

0. y - velocity component at North - West (m)

0. y - velocity component at North - East (m)

0.015 particle spacing for this block (m)

0 Add another block (1=yes)

1 refinement procedure 1 for yes 0 for no

0.4 eta coefficient for refined particle, distance (suggested 0.4)

0.9 alpha coefficient for refined particle, smoothing length (suggested 0.9)

0.005 size of the grid for refinement along x direction (m)

0.005 size of the grid for refinement along y direction (m)

0.0001 minimum water depth for splitting (m)

0.7 x_min_ref_lim (m)

0.4535 y_min_ref_lim (m)

0.8 x_max_ref_lim (m)

0.7465 y_max_ref_lim (m)

0.9 Ratio of initial (max Area before splitting)/(Area) before splitting

1 Add another block for refinement(1=yes)

0.7 x_min_ref_lim (m)

0.35 y_min_ref_lim (m)

0.79 x_max_ref_lim (m)

39

0.4530 y_max_ref_lim (m)

0.9 Ratio of initial (max Area before splitting)/(Area) before splitting

1 Add another block for refinement(1=yes)

0.7 x_min_ref_lim (m)

0.7430 y_min_ref_lim (m)

0.79 x_max_ref_lim (m)

0.85 y_max_ref_lim (m)

0.9 Ratio of initial (max Area before splitting)/(Area) before splitting

0 Add another block for refinement(1=yes)

1 Which compiler is desired? (1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95)

1 1 for single precision, 2 for double precision

4.3.4. Test case 4: 2-D CADAM Case with 45° Channel

Figure 4.9: Case4 2-D Dam Break from University of Parma with particle splitting at

dam exit: Water surface and velocity vector snapshots (Vacondio et al. 2012a)

0 Choose Starting options: 0=new, 1=restart

0 debug activated: 1 - for yes (output at every timestep) 0 for no

1000. fluid density (1000 kg/m3 for water)

2 stabilization term 1 - artificial viscosity, 2 - Lax Friedrichs flux, 3 - two shocks Riemann solver

2. valule of alpha (useful just for artificial viscosity)

0.001 minimum depth for the friction source term

1 0 - No MUSCL reconstruction, 1 - MUSCL reconstruction

1.E-3 tolerance in the Newton - Raphson algorithm (suggested 1.E-3)

1 number of time steps for Newton - Raphson iterative procedure (suggested 1-10)

50 maximum number of iterations in the Newton - Raphson iterative procedure

1 variable time step: 1 for yes, 2 for no

10. time step, or maximum time step if variable time step activated

0.2 Courant number

0.2 output interval (seconds)

40.01 End of the simulation (seconds)

0. time step for intitial output (seconds)

1.2 smoothing length coefficient: h=dx*coef (suggested 1.2)

9.59 x length of the domain (m)

3.75 y - length of the domain (m)

0.02 x size of the regular grid for output

40

0.02 y size of the regular grid for output

0 open boundaries: 1 for yes, 0 for no

1 closed boundaries: 1 for yes, 0 for no

1 do you want to add a straight closed boundary? 1 for yes

0. starting point x - coord (m)

0. starting point y - coord (m)

1 marker starting point

2.39 endpoint x - coord (m)

0. endpoint y - coord (m)

1 marker endpoint point

0.02475 distance between virtual particles (sugg. 0.5 dx)

0. unit vector pointing inside the domain, x coord

1. unit vector pointing inside the domain, y coord

1 do you want to add another closed boundary? 1 for yes 0 for no

2.39 starting point x - coord (m)

0. starting point y - coord (m)

1 marker starting point

2.39 endpoint x - coord (m)

0.445 endpoint y - coord (m)

0 marker endpoint point

0.02475 distance between virtual particles (sugg. 0.5 dx)

-1. unit vector pointing inside the domain, x coord

0. unit vector pointing inside the domain, y coord

1 do you want to add another closed boundary? 1 for yes 0 for no

2.39 starting point x - coord (m)

0.445 starting point y - coord (m)

0 marker starting point

6.64 endpoint x - coord (m)

0.445 endpoint y - coord (m)

1 marker endpoint point

0.02475 distance between virtual particles (sugg. 0.5 dx)

0. unit vector pointing inside the domain, x coord

1. unit vector pointing inside the domain, y coord

1 do you want to add another closed boundary? 1 for yes 0 for no

6.64 starting point x - coord (m)

0.445 starting point y - coord (m)

1 marker starting point

957.449 endpoint x - coord (m)

337.949 endpoint y - coord (m)

0 marker endpoint point

0.02475 d istance between virtual particles (sugg. 0.5 dx)

-.707107 unit vector pointing inside the domain, x coord

.707107 unit vector pointing inside the domain, y coord

1 do you want to add another closed boundary? 1 for yes 0 for no

0. starting point x - coord (m)

0. starting point y - coord (m)

1 marker starting point

0. endpoint x - coord (m)

2.44 endpoint y - coord (m)

1 marker endpoint point

0.02475 distance between virtual particles (sugg. 0.5 dx)

1. unit vector pointing inside the domain, x coord

0. unit vector pointing inside the domain, y coord

1 do you want to add another closed boundary? 1 for yes 0 for no

0. starting point x - coord (m)

2.44 starting point y - coord (m)

1 marker starting point

2.39 endpoint x - coord (m)

2.44 endpoint y - coord (m)

1 marker endpoint point

0.02475 distance between virtual particles (sugg. 0.5 dx)

0. unit vector pointing inside the domain, x coord

41

-1. unit vector pointing inside the domain, y coord

1 do you want to add another closed boundary? 1 for yes 0 for no

2.39 starting point x - coord (m)

2.44 starting point y - coord (m)

1 marker starting point

2.39 endpoint x - coord (m)

0.94 endpoint y - coord (m)

0 marker endpoint point

0.02475 distance between virtual particles (sugg. 0.5 dx)

-1. unit vector pointing inside the domain, x coord

0. unit vector pointing inside the domain, y coord

1 do you want to add another closed boundary? 1 for yes 0 for no

2.39 starting point x - coord (m)

0.94 starting point y - coord (m)

0 marker starting point

64.335 endpoint x - coord (m)

0.94 endpoint y - coord (m)

0 marker endpoint point

0.02475 distance between virtual particles (sugg. 0.5 dx)

0. unit vector pointing inside the domain, x coord

-1. unit vector pointing inside the domain, y coord

1 do you want to add another closed boundary? 1 for yes 0 for no

64.335 starting point x - coord (m)

0.94 starting point y - coord (m)

0 marker starting point

9.22 endpoint x - coord (m)

372.954 endpoint y - coord (m)

0 marker endpoint point

0.02475 distance between virtual particles (sugg. 0.5 dx)

+.707107 unit vector pointing inside the domain, x coord

-.707107 unit vector pointing inside the domain, y coord

0 do you want to add another closed boundary? 1 for yes 0 for no

0 do you want to add a circular closed boundary 0 for no

1 Choose Bed Profile 1 = flat bed in blocks

0. initial position of the block, x - coord

0. initial position of the block, y - coord

2.39 length of the block

2.44 heigth of the block

0.0495 bottom particle spacing

4.8 coefficient for the smoothing length (sugg. 1.2)

0.01 manning coefficient of the block

0. constant elevation of the block

1 do you want to add another block 1 for yes

2.39 initial position of the block, x - coord

0.445 initial position of the block, y - coord

2. length of the block

0.495 heigth of the block

0.0495 bottom particle spacing

4.8 coefficient for the smoothing length (sugg. 1.2)

0.01 manning coefficient of the block

0.33 constant elevation of the block

1 do you want to add another block 1 for yes

4.39 initial position of the block, x - coord

0. initial position of the block, y - coord

5.61 length of the block

4.5 heigth of the block

0.0495 bottom particle spacing

4.8 coefficient for the smoothing length (sugg. 1.2)

0.01 manning coefficient of the block

0.33 constant elevation of the block

0 do you want to add another block 1 for yes

42

1 Choose fluid particle distribution 1 = square blocks

0. initial position of the block, x - coord

0. initial position of the block, y - coord

2.39 length of the block

2.44 heigth of the block

0.58 water surface elevation at South - West (m)

0.58 water surface elevation at South - East (m)

0.58 water surface elevation at North - West (m)

0.58 water surface elevation at North - East (m)

0. x - velocity component at South - West (m)

0. x - velocity component at South - East (m)

0. x - velocity component at North - West (m)

0. x - velocity component at North - East (m)

0. y - velocity component at South - West (m)

0. y - velocity component at South - East (m)

0. y - velocity component at North - West (m)

0. y - velocity component at North - East (m)

0.0495 particle spacing for this block (m)

0 Add another block (1=yes)

1 refinement procedure 1 for yes 0 for no

0.4 eta coefficient for refined particle, distance (suggested 0.4)

0.9 alpha coefficient for refined particle, smoothing length (suggested 0.9)

0.02 size of the grid for refinement along x direction (m)

0.02 size of the grid for refinement along y direction (m)

0.001 minimum water depth for splitting (m)

1.90 x_min_ref_lim (m)

0.455 y_min_ref_lim (m)

2.50 x_max_ref_lim (m)

0.90 y_max__ref_lim (m)

0.9 Ratio of initial (max Area before splitting)/(Area) before splitting

1 Add another block for refinement(1=yes)

1.90 x_min_ref_lim (m)

0.04 y_min_ref_lim (m)

23.653 x_max_ref_lim (m)

0.455 y_max__ref_lim (m)

0.9 Ratio of initial (max Area before splitting)/(Area) before splitting

1 Add another block for refinement(1=yes)

1.90 x_min_ref_lim (m)

0.90 y_min_ref_lim (m)

23.653 x_max_ref_lim (m)

1.385 y_max__ref_lim (m)

0.9 Ratio of initial (max Area before splitting)/(Area) before splitting

0 Add another block for refinement(1=yes)

1 Which compiler is desired? (1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95)

1 1 for single precision, 2 for double precision

43

5. HOW TO CHANGE SWE-SPHysics FOR YOUR APPLICATION

5.1 Introduction

When people start using the SPHysics codes, we often get asked if the code can do a

particular function that is not included in the demonstration cases. The answer we give

is normally yes, but the particular functionality required may require some re-coding.

We do not normally propose to do this re-coding ourselves unless the application area

coincides closely with our own area and current projects, or there is a bug. The reason

behind this is that SPHysics softwares primarily research codes and we have released

what we have found useful for our own research. As the code is research oriented, it is

up to the user to adapt the code and the subroutines to their satisfaction.

This short section is aimed at helping those people who want to change the code for

their own purposes. Figure 5.1 displays the main structure of the code. Here, we list

which subroutines in the code you should examine for possible modification.

Important Note: if you create any new subroutines for the main source code, you must

include the names of these new files in the “make files” used for compiling the code

which are written in subroutines tocompile_win_ifort,

tocompile_ftn95,tocompile_gfortran, tocompile_ifort in

SPHYSICS_SWE_gen_1D/2D.f. Read Section 3.2.2.3 to see where each of the

subroutines is compiled.

Changing the boundary conditions.

Boundary conditions are treated in each celij & self subroutines. Any

modification to the boundary conditions should be done in these subroutines.

Changing the timestepping algorithm

The timestepping is performed in all of the step subroutines:

step_leap_frog_1D/2D.f. These subroutines then call subroutines ac which

control the sweep across the particles (or 2h grid) for each (part of the) timestep.

Changing the kernel calculation

The smoothing kernel and its derivatives are calculated in the kernel subroutines:

kernel_cubic_1D/2D.f.

Changing the viscous formulation

The viscous terms are all calculated in the viscosity subroutines which are called

from celij & self:

viscosity_artificial_1D/2D.f & viscosity_LF_1D/2D.f.

Loading in data files and setting useful parameters

If you wish to examine and modify what data SWE-SPHysics loads initially, all the

useful data is imported in subroutine getdata_1D/2D.f Furthermore, all the

useful parameters that remain the same throughout the simulation are calculated

here such as the kernel normalization factors, etc. All global variables are defined

in global_1D/2D.f.

Zeroing variables

44

Many variables that are evaluated throughout the timestep, such as the accelerations,

ax, ay, az are zeroed initially in the different ac subroutines: ac_1D/2D.f.

Changing the input bathymetry

SWE-SPHysicscan use both (i) special shapes available

inSPHYSICS_SWE_gen_1D/2D.f and (ii) arbitrary bed/bottom geometries

(bathymetries) which are loaded via input files in the format of CSV files with XYZ

data + smoothing length & roughness coefficients. Case4_Tsunami uses a file

called “tsunami_bed”.

Particle refinement

SWE-SPHysicscan split particles according to pre-defined criteria (see Vacondio et

al. 2011b). In the code, this is controlled in subroutine refinement_2D.f and

refinement_v_2D.f.

45

5.2 Code Structure

SPHYSICS_SWE

getdata

step

variable_time_step (CFL condition)

ac (ax,ay)

celij

self

Time
step
LOOP

Repeat for each time-stepping scheme and for
each filter (density, kernel correction)

poute (data output)
poute_grid (data output on a grid)

kernel,
viscosity

source slope celij_b kernel

vel. and position update

refinement (particle splitting)

divide (link – list)

bottom (bottom elevation b)

ac_dw (iterative procedure for d h)

Figure 5.1 Outline of code structure

5.3 Main Variables

Here we present a table of the main variables (or those with less than obvious names)

and the counterpart in equations:

SPHysics variable SPHquantity

udot(i), vdot(i)
t

v

t

aa

d

d

d

d
r

=
v

dH_SPH_x(i), dH_SPH_y(i)
b

x

∂

∂
,

b

y

∂

∂

46

ar(i)
t

a

d

d ρ

cs(i) ac

drx, dry ()baab xxx −= , ()baab yyy −=

dux, duy ()baab uuu −= , ()baab vvv −=

frxi, frxj, fryi, fryj
a

ab

x

W

∂

∂
,

b

ba

x

W

∂

∂
, ab

a

W

y

∂

∂
, ba

b

W

y

∂

∂

pm(j) bm

pVol(j)
b

b

b

m
V

ρ
=

h_t(i) b

rhop(i) aρ

dw(i) d

h_var(i) h

rhop_sum ∑∑ =
b

abb

b b

b
abb Wm

m
W

ρ
ρ

rr2
2

ijr

sum_wab ∑
b b

b

ab

m
W

ρ

up(i), vp(i) (),a a a av u v= =v
r

xp(i), yp(i) (),a a a ar x y= =r
r

Wab ()baab rrWW
rr

−=

47

6. VISUALIZATION

To visualize the results obtained from SWE-SPHysics simulations, some basic post-

processing programs have been provided in the SWE-SPHysics_1D/Post-

Processing and SWE-SPHysics_2D/Post-Processing directories.

Detailed README files, explaining the procedure to view the results using Matlab and

Paraview, are available in those directories. The user is encouraged to read these

README files prior to using the visualization programs.

6.1 Using Matlab

To view the results using Matlab, start Matlab and navigate to a

run_directory/CaseN.

To visualise 1-D results at the command prompt type (and then hit enter):

SPHYSICS_SWE_1D_Plot

To visualise 2-D results at the command prompt type (and then hit enter):

SPHYSICS_SWE_2D_Plot

In each case, enter the required information and the plotting routine will the ncycle

through the frames producing images such as those for the 2-D Thacker Basin:

Figure 6.1 Example output images using Matlab

6.2 Using Paraview (open-source) 2-D only

To view the results using the open-source Paraview software (www.paraview.org), the

SWE-SPHysics output files, PART_0001, etc., must be converted to VTK format.

1. For windows or linux, there are different commands:

(i) Linux with gfortran: Enter

./PART2VTU_SWE_unix_gfortran.bat

(ii) Linux with ifort: Enter

./PART2VTU_SWE_unix_ifort.bat

(iii)Windows with ifort: Enter

./PART2VTU_SWE_windows_ifort.bat

48

(iv) Windows with ftn95: Enter

./PART2VTU_SWE_windows_ftn95.bat

2. Start Paraview and navigate to run_directory/CaseN/ParaviewFiles/VTU/

3. Open VTUinp.pvd and click

4. Open ibottom.vtu and click

5. Use the “Warp by Scalar” filter (Menu: Filters→Alphabetical→Warp by Scalar)

and Select “Elevation” to scale the water surface and bed profiles as desired:

Figure 6.2 Using Paraview and “Warp by Scalar” to display in Paraview

No paraview routines are provided for 1-D.

7. REFERENCES

Benz W. 1990. Smoothed Particle Hydrodynamics: A review in The numerical

Modelling of Nonlinear Stellar Pulsations: Problems and Prospects, J.R. Butchler

ed., Kluwer Acad. Publ. 269-288

Gomez-Gesteira M, Rogers B D, Dalrymple R A, Crespo AJC. 2010. "State-of-the-art

of classical SPH for free-surface flows". Journal of Hydraulic Research. Vol. 48.

Issue Extra Issue. pp 6-27. DOI: 10.1080/00221686.2010.9641242

Gomez-Gesteira M, Rogers B D, Crespo AJC, Dalrymple RA, Narayanaswamy M. In

Press. "SPHysics - development of a free-surface fluid solver- Part 1: Theory and

Formulations". Computers & Geosciences. Vol. 48, November 2012, Pages 289–299

DOI: 10.1016/j.cageo.2012.02.029.

49

Gomez-Gesteira M, Crespo AJC, Rogers B D, Dalrymple RA, Dominguez JM. 2012.

"SPHysics - development of a free-surface fluid solver- Part 2: Efficiency and test

cases". Computers & Geosciences., Vol. 48. pp 300-307. DOI:

10.1016/j.cageo.2012.02.028.

Liu, G.R. 2003. Mesh Free methods: Moving beyond the finite element method. CRC

Press, pp. 692.

Monaghan, J. J. 1982 Why particle methods work. Siam J. Sci. Stat. Comput. 3: 422-

433.

Monaghan, J. J. 1992. Smoothed particle hydrodynamics. Annual Rev. Astron. Appl.,30:

543- 574.

Monaghan, J. J. 2005. Smoothed Particle Hydrodynamics. Rep. Prog. Phys. 68: 1703-

1759.

Thacker WC. 1981. Some exact solutions to the nonlinear shallow-water wave

equations. Journal of Fluid Mechanics, 107:499–508.

Vacondio, R., Rogers, B.D., Stansby, P.K. and Mignosa, P. (2013), A correction for

balancing discontinuous bed slopes in two-dimensional smoothed particle

hydrodynamics shallow water modeling. Int. J. Numer. Meth. Fluids. Vol. 71: 850–

872. DOI: 10.1002/fld.3687

Vacondio R, Rogers B D, Stansby P K. (2011a), "Smoothed Particle Hydrodynamics:

approximate zero-consistent 2-D boundary conditions and still shallow water tests".

Int. J. Numer. Meth. Fluids. Vol. 69. Issue 1. pp 226-253, DOI: 10.1002/fld.2559

Vacondio R, Rogers B D, Stansby P K. (2012a), "Accurate particle splitting for SPH in

shallow water with shock capturing". Int. Journal for Numerical Methods in Fluids.

July, Vol. 69. Issue 8. pp 1377-1410, DOI: 10.1002/fld.2646

Vacondio R, Rogers B D, Stansby P K, Mignosa P. (2012b), "SPH modeling of shallow

flow with open boundaries for practical flood simulation". Journal of Hydraulic

Engineering. Vol. 138. No. 6. pp. 530-541, DOI: 10.1061/(ASCE)HY.1943-

7900.0000543

50

8. PUBLICATIONS USING THE SWE-SPHysics CODE

Journal Papers

Vacondio, R., Rogers, B.D., Stansby, P.K. and Mignosa, P. (2013), A correction for

balancing discontinuous bed slopes in two-dimensional smoothed particle

hydrodynamics shallow water modeling. Int. J. Numer. Meth. Fluids. Vol. 71: 850–

872. DOI: 10.1002/fld.3687

Vacondio R, Rogers B D, Stansby P K. (2011a), "Smoothed Particle Hydrodynamics:

approximate zero-consistent 2-D boundary conditions and still shallow water tests".

Int. J. Numer. Meth. Fluids. Vol. 69. Issue 1. pp 226-253, DOI: 10.1002/fld.2559

Vacondio R, Rogers B D, Stansby P K. (2012a), "Accurate particle splitting for SPH in

shallow water with shock capturing". Int. Journal for Numerical Methods in Fluids.

July, Vol. 69. Issue 8. pp 1377-1410, DOI: 10.1002/fld.2646

Vacondio R, Rogers B D, Stansby P K, Mignosa P. (2012b), "SPH modeling of shallow

flow with open boundaries for practical flood simulation". Journal of Hydraulic

Engineering. Vol. 138. No. 6. pp. 530-541, DOI: 10.1061/(ASCE)HY.1943-

7900.0000543

Conference Proceedings

Vacondio R, Rogers B D, Stansby P K, Mignosa P, Feldman J. 2011b "A dynamic

particle coalescing and splitting scheme for SPH". Proc. 6th International SPHERIC

Workshop. Editor T. Rung & C. Ulrich. pp 93-100. 8-10 June 2011.

Vacondio R, Mignosa P, Rogers B D, Stansby P K. "SPH Shallow Water Equation

Solver for real flooding simulation". Proc. 5th International SPHERIC Workshop.

Editor B.D. Rogers. pp 106-113. June 2010.

Vacondio R, Mignosa P, Rogers B D, Stansby P K. "2-D numerical modeling of rapidly

varying shallow water flows by Smoothed Particle Hydrodynamics technique". Proc.

of Riverflow 2010. pp 1621. 8-10 September 2010.

PhD Thesis

Vacondio, R., Shallow Water and Navier-Stokes SPH-like numerical modelling of

rapidly varying free-surface flows, Università degli Studi di Parma Facoltà di

Ingegneria, 2010.

