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Abstract 

This guide documents the computer program SWE-SPHysics based on 

Smoothed Particle Hydrodynamics theory. The documentation 

provides a brief description of the governing equations and the 

different numerical schemes used to solve them. FORTRAN code is 

provided for one and two-dimensional versions of the model. Post- 

processing tools for MATLAB and PARAVIEW visualization are also 

provided. Finally, several working examples are documented to enable 

the user to test the program and verify that it is installed correctly. 
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1.  INTRODUCTION 

 

1.1  Introduction to Shallow Water Equations (SWEs) and the need for a meshless 

SPH solver 

 

The two-dimensional shallow-water equations (SWEs) are widely used to approximate 

flows for a wide range of rapidly (and slowly) varying free-surface flows, such as dam 

breaks, river flooding, and tidal flows including storm surge and wave overtopping 

causing inundation in estuaries and coastal regions. Grid-based solvers are now widely 

available. Although accurate and robust wetting and drying routines have been 

developed, grid-based solvers are limited in simulating multi-phase effects, most 

importantly flows with rapid distortion in flood modelling. Particle methods are quite 

flexible in this respect and are also naturally adaptive for modelling complex domains. 

Here, the SPHysics numerical scheme, originally developed to solve Navier-Stokes 

Equations has been extended to shallow water equations. 

 

1.2  Equations of Motion 

 

The shallow water equations (SWEs) represent the depth-integrated equations of mass 

and momentum.  In order to be solved using SPH, the conservation equations need to be 

written in Lagrangian form: 

 

Eulerian Form Langrangian Form  
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where d is depth as plotted in Figure 1.1, v is depth-averaged velocity, t is time, b is the 

bottom elevation, g is the acceleration due to gravity and Sf is the bed friction source 

term. The SWEs are formally identical to the Euler equations if we re-define the density 

ρ as the mass of fluid per unit of area in a 2-D domain; with this definition of ρ we have 

ρ = ρwd , where ρw is the constant  (conventional) density. The density ρi of a particle i 

can vary considerably during a simulation; therefore an SPH scheme with variable 

smoothing length h in time and space is used to keep the number of neighbour particles 

roughly constant during the processes of water inundation and retreat.  
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Figure 1.1: Flow with a free surface under the effect of gravity. 

 

1.3 Solving the Shallow Water Equations using SPH 

 

The methodology to solve the SWEs using SPH is described in the following papers, 

and we encourage you to read and refer to these publications: 

 

Feature Publication 

Inlet-outlet (inflow-outflow) 

boundaries
 

Vacondio R, Rogers B D, Stansby P K, Mignosa P. 2012. "SPH 

modeling of shallow flow with open boundaries for practical flood 

simulation". Journal of Hydraulic Engineering. DOI: 

10.1061/(ASCE)HY.1943-7900.0000543 

Solid (no-flow) boundaries
 

Vacondio R, Rogers B D, Stansby P K. 2011. "Smoothed Particle 

Hydrodynamics: approximate zero-consistent 2-D boundary 

conditions and still shallow water tests". Int.  Journal for 

Numerical Methods in Fluids. DOI: 10.1002/fld.2559 

Particle splitting and variable h Vacondio R, Rogers B D, Stansby P K. 2011. "Accurate particle 

splitting for SPH in shallow water with shock capturing". Int. 

Journal for Numerical Methods in Fluids. DOI: 10.1002/fld.2646 

Water depth (or density evaluation) Vacondio R, Rogers B D, Stansby P K. 2011. "Accurate particle 

splitting for SPH in shallow water with shock capturing". Int. 

Journal for Numerical Methods in Fluids. DOI: 10.1002/fld.2646 

Bed Topography Representation Vacondio R, Rogers B D, Stansby P K, Mignosa P. 2012. "SPH 

modeling of shallow flow with open boundaries for practical flood 

simulation". Journal of Hydraulic Engineering. DOI: 

10.1061/(ASCE)HY.1943-7900.0000543 

Viscosity & Stabilisation terms Vacondio R, Rogers B D, Stansby P K. 2011. "Accurate particle 

splitting for SPH in shallow water with shock capturing". Int. 

Journal for Numerical Methods in Fluids. DOI: 10.1002/fld.2646 

Time stepping Vacondio R, Rogers B D, Stansby P K. 2011. "Smoothed Particle 

Hydrodynamics: approximate zero-consistent 2-D boundary 

conditions and still shallow water tests". Int.  Journal for 

Numerical Methods in Fluids. DOI: 10.1002/fld.2559 

 

 

 

 

1.4 The SPH method and the weighting function (smoothing kernel) 

 

The main features of the SPH method, which is based on integral interpolants, are 

described in detail in the following papers (Monaghan, 1982; Monaghan, 1992; Benz, 
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1990; Liu, 2003; Monaghan, 2005). Herein we will only refer to the representation of 

the constitutive equations in SPH notation. In SPH, the fundamental principle is to 

approximate any function )(rA  by  

∫ −= 'd),'()'()( rrrrr hWAA  (1.3) 

where h is called the smoothing length, ),'( hW rr −  is the weighting function or kernel, 

and  denotes approximation. This approximation, in discrete notation, leads to the 

following approximation of the function at a particle (interpolation point) i, 

),()( hW
A

mA j

j

j

j

j rrr −=∑
ρ

 
(1.4) 

where the summation is over all the particles within the region of compact support of 

the kernel function., The mass and density are denoted by mj and ρj respectively and 

),( hWW jiij rr −= is the weight function or kernel.  

 

For a more recent review of SPH applied to the Navier-Stokes equations, please see 

Gomez-Gesteira et al. (2010). 

 

1.5 Future Developments 

 

As with all developments in the SPHysics project, official code updates are only 

released after validation and journal papers are published. 

 

Future developments for SWE-SPHysics includes: 

1. Particle coalescing (merging) for efficient simulations (Vacondio et al. 2011b) 

2. Correction for step changes in the bed (Vacondio et al. 2013) 
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2. IMPLEMENTATION 

 

2.1 Overall Implementation 

 

SWE-SPHysics was built from the original FORTRAN SPHysics Navier-Stokes solver, 

and hence is very similar in structure and operation.  For information on the main 

solver, users are encouraged to find information in two articles explaining the theory 

and implementation, Gomez-Gesteira et al. (2012a,b). 

 

2.2 Computational efficiency: link list. 

 

Similar to the fortran SPHysics code for the Navier-Stokes equations, the computational 

domain is divided in square cells of side 2h (see Figure 1 of Gomez-Gesteiraet al. 

2012b).  Here the only difference is that the smoothing length, h, can vary. Hence, 

changes are required to the code. 

 

2.2.1  Changes to accommodate variable smoothing length 

 

To compute both the water depth and the smoothing length for each i-th particle, a 

Newton Rapson iterative procedure is implemented in the subroutine ac_dw. The grid 

used in the linked-list procedure is equal to 2hmax, where hmax is the maximum 

smoothing length in the domain. When hmax is updated the grid needs to be re-defined. 

 

Two link lists are considered in SWE-SPHysics. The first one tracks the open and closed 

boundary particles and it is partially upgraded every time step. This is due to the fact 

that the only boundary particles that change their position in time are the ones that 

describe moving objects. The second link list corresponds to fluid particles and is 

completely updated every time step. 

An additional link list is built at the beginning of the simulation for the bottom particles, 

and this is not updated during the simulation. 

 

2.3. Restart runs & checkpointing (repetitive restarts) 

 

Restarting previous (unfinished) runs is controlled using the RESTART parameter.  If 

the code is being run on computer clusters, there are sometimes limits as to how long a 

particular job can run, e.g. 24 hours. This can be specified when first launching the 

SPHysics code by setting the i_restartRun parameter in the Case files. 

 

i_restartRun> 1 is used for Checkpointing = repetitive restarting of code (for 

clusters) 

 

so that: 

i_restartRun = 0   :   Start new run, once only 

i_restartRun = 1   : reStart old run, once only 
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3. USER’S MANUAL 

 

3.1. Installation 

Two versions of SWE-SPHysics are available in this release: 

- SWE_SPHysics_1D. The computational domain is 1-D, where x corresponds 

to the horizontal direction and z to the vertical direction. 

- SWE_SPHysics_2D. The computational domain is 2-D, where x and y are the 

horizontal directions and z the vertical direction. 

SWE_SPHysics is distributed in a compressed file (gz or zip). The directory tree shown 

in Figure 3.1 can be observed after uncompressing the package  

 

 
Figure 3.1 SWE-SPHysics directory (folder) structure 

 

The following directories can be observed both in 1-D and in 2-D. 

source contains the FORTRAN codes. This directory contains two subdirectories: 

SPHYSICS_SWE_gen: contains the FORTRAN codes to create the initial 

conditions of the run. 

SPHYSICS_SWE: contains the FORTRAN source codes of SPH. 

execs contains all executable codes. 

 

SWE-SPHysics 

 
  

source 

  
 

execs 

  
  

run_directory 

  
Post-

Processing 

  
 

        Case1 

  
  
        CaseN 

  
  

SPHYSICS_SWE_gen 

  
  

SPHYSICS_SWE 

  
  

matlabRoutines 

  
  

fortranRoutines 

⁞ 
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run_directory is the directory created to run the model. The different subdirectories 

Case1, …, CaseN placed in this directory correspond to the different working cases 

to be created by the user. Input and output files are written in these directories  

Post-Processing this directory contains codes to visualize results.  

 

 

3.2. Program Outline 

 

Both the 1-D and 2-D version consist of two general programs: 

 

(i) Geometry Generation using SPHYSICS_SWE_gen 

(ii) SPH simulation using SPHYSICS_SWE 

 

These are run separately and in the following order.  

 

1-D Code: 

SPHYSICS_SWE_gen_1D: Creates the initial conditions and files for a given 

case. 

SPHYSICS_SWE_1D: Runs the selected case with the initial conditions created 

by SPHYSICS_SWE_gen_1D code. 

2-D Code: 

SPHYSICS_SWE_gen_2D: Creates the initial conditions and files for a given 

case. 

SPHYSICS_SWE_2D: Runs the selected case with the initial conditions created 

by SPHYSICS_SWE_gen_2D code. 

 

In general, 1-D or 2-D appended to the source file name means that the source is suited 

for 1-D or 2-D calculations. 

 

In the remainder of this document, SPHYSICS_SWE_gen and SPHYSICS_SWE, 

when used, refer to both the aforementioned 1-D and 2-D programs for convenience. 

For example, SPHYSICS_SWE_gen will refer to both SPHYSICS_SWE_gen_1D 

and SPHYSICS_SWE_gen_2D. 

 

 

 

3.2.1. SPHYSICS_SWE_gen 

All subroutines are included in two source files (SPHYSICS_SWE_gen_1D.f or 

SPHYSICS_SWE_gen_2D.f), depending on the nature one or two- dimensional of 

the calculation. Each source uses global variables where most of the variables are 

stored: global_1D.f/global_2D.f. Both versions (1-D and 2-D) can be 

compiled by the user with any FORTRAN compiler and the resulting executable file is 

placed in subdirectory \execs. 



13 

 

SPHYSICS_SWE_gen plays a dual role:  

(i) Creating the MAKEFILE to compile SPHysics; and  

(ii) Creating the output files that will form the input files to be read by SWE- 

SPHysics. These files contain information about the geometry of the domain, the 

distribution of particles and the different running options. 

 

In Windows for example, SPHYSICS_SWE_gen.exe can be executed using one of the 

following two commands, 

1.SPHYSICS_SWE_gen.exe <input_file >output_file 

input_file is the general name (any name can be used) of the file containing the 

running options. Different examples of input_file will be shown in next section. 

output_file is the general name (any name can be used) of the file containing general 

information about the run. This file is never read by the rest of the code and only 

serves to provide information to the user.  

2. SPHYSICS_SWE_gen.exe 

In this case, data about the run must then be provided by the user by means of the 

keyboard and the information about the run appears on the screen. This option can be 

used by beginners to get familiarized with the different options. 

 

3.2.1.1. Creating compiling options 

The compilation of SWE-SPHysics code depends on the nature of the problem under 

consideration and on the particular features of the run. Thus, the user can chose the 

options that are better suited to any particular problem and only those options will be 

included in the executable versions of SWE-SPHysics. This protocol speeds up 

calculations since the model is not forced to make time consuming logical decisions. 

 

In both 1-D and 2-D the following compiling options can be considered: 

i) stabilization term 1 - artificial viscosity, 2 - Lax Friedrichs flux, 3 - two 

shocks Riemann solver 

ii) 0 - No MUSCL reconstruction, 1 - MUSCL reconstruction 

iii) Choice of compilers: (1=gfortran; 2=ifort; 3=win_ifort; 4=Silverfrost 

FTN95). 

 

3.2.1.2. Input files 

There are potentially three different types of input file: 

(i) Case input files (mandatory) 

(ii) Bed/Bottom profiles 

(iii) Open Boundary Specifications 

 

Different examples of input files(referred to herein as Case files, e.g. Case1.txt) will be 

shown in Section 4, where several test cases will be described. 
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3.2.1.3. Output files 

As mentioned above, different output files are created by SPHYSICS_SWE_gen. 

These files can be used either by the SPHYSICS_SWE executable as input files or by 

MATLAB codes to visualize results (different MATLAB codes are provided in /Post-

processing subdirectory. 

 

SPHysics.mak 

Compiling file created by the executable SPHYSICS_SWE_gen. It depends on the 

running options defined by input_file and can be used for Intel Fortran, Silverfrost 

FTN95, ifort and gfortran although it can be adapted to other compilers. 

 

INDAT 

Created by SPHYSICS_SWE_gen: 

Read by SPHYSICS_SWE code at GETDATA (see Subsection 3.2.2.3). 

UNIT=11 

The file contains the following variables: 

 

rho0  

viscos_val  

dw_min_fric  

coef  

vlx medium extent in x direction 

vly medium extent in y direction 

np Number of particles at start of simulation 

np_b Number of bed particles 

npv number of virtual particles 

i_openbc  

distmin  

tol  

ivar_dt Activate (10yes,0=no) variable timesteps 

dt Initial timestep 

CFL Courant number (0.1-0.5) 

tmax Length of simulation 

out Output interval 

trec_ini  

i_restartRun  

hsm_b_max smoothing length for the bottom particles 

n0 max number of particles in one cell 

idebug  

iMUSCL Activate (10yes,0=no) MUSCL 

reconstruction 

i_dw_iter  
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i_max_iter  

!refining parameters  

area_lim*ref_lim limits of area to refine 

ref_p position of refined particles (coeff) 

ref_h smoothing length of refined particles 

dw_min_ref  minimum water depth to activate refining 

xmin_ref  

ymin_ref  

dxx_ref  

dyy_ref  

ncx_ref  

ncy_ref  

!parameters to export on regular grid  

dx_grd  

dy_grd  

 

IPART 

Created by SPHYSICS_SWE_gen. 

Read by SPHYSICS_SWEcode at GETDATA (see subsection 3.2.2.3). 

UNIT=13 

The file contains the following variables recorded at time=0: 

In 1-D version 

xp(1) up(1) rhop(1) dw(1) areap(1)  

xp(2) up(2) dw(2) areap (2)  

………. 

xp(np) up(np) dw(np) areap (np)  

 

In 2-D version 

xp(1) yp(1) up(1) vp(1) dw(1) areap(1) h_var(1) iflag(1) 

xp(2) yp(2) up(2) vp(2) dw(2) areap(2) h_var(2) iflag(2) 

………………  ……………….. 

xp(np) yp(np) up(np) vp(np) dw(np) areap(np) h_var(np) iflag(np) 

 

Description: 

xp(i) Position in x direction of particle i. 

yp(i) Position in y direction of particle i. 

up(i) Velocity in x direction of particle i. 

vp(i) Velocity in y direction of particle i. 

dw(i)Free-surface elevation of particle i. 

areap(i) Area of particle i. 

h_var(i) Smoothing Length (h) of particle i. 

iflag(i) Flag of particle i. 
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3.2.1.4. Subroutines 

All subroutines in SPHYSICS_SWE_gen are inside a single source file 

SPHysics_SWE_gen_1D.f or SPHysics_SWE_gen_2D.f 

 

SPHysicsgen Main program.  

 

Subroutine Name Purpose 

surface_define Defining initial condition 

slopingBed Defining bottom elevation 

parabolicBed Defining bottom elevation 

read_bedProfile Defining bottom elevation 

tocompile_unixStyle Create make file 

tocompile_cvf Create make file 

 

3.2.2. SPHYSICS_SWE 

The SPHYSICS_SWE executable depends on the compiling option determined by 

SPHYSICS_SWE_gen 

 

3.2.2.1. Input files 

The input files correspond to the output files generated by SPHYSICS_SWE_gen and 

are described in Section 3.2.1.3. 

 

3.2.2.2. Output files 

 

PART_klmn 

Created by SPHYSICS_SWE at POUTE_1D.f or POUTE_2D.f with a periodicity in 

seconds fixed by the input_file used to run SPHYSICS_SWE_gen.  

UNIT=23 

The structure of PART_klmn is the same as that of IPART previously described. The 

indices k, m, n and l can take any integer value from 0 to 9, in such a way that the 

maximum number of images is 9999. 

Each PART_klmn file is opened, recorded and closed in each call to POUTE_2D.f or 

POUTE_2D.f subroutines, so, a single UNIT=23 is assigned to all PART_klmn files. 

 

GRD_dklmn, GRD_uklmn, GRD_vklmn 

 

These files contain values for water depth, x-direction velocity, y-direction velocity 

interpolated to a regular grid of spacing (dx_grd, dy_grd) with nplot_x and nplot_y 

points in the x- and y-directions, respectively. 

 

Created by SPHYSICS_SWE subroutines POUTE_GRD_1D.f or 

POUTE_GRD_2D.f with the same periodicity as PART_klmn. 

UNIT=24 

For example, in GRD_dklmn the following variables are recorded: 
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DSAA 

nplot_x, nplot_y 

0.0, vlx 

0.0, vly 

0.0, m_dw_grd 

dw(1,1) dw (2,1) … dw(nplot_x,1) 

dw(1,2) dw (2,2) … dw(nplot_x,2) 

… 

dw(1,nplot_y) dw (2,nplot_y) … dw(nplot_x,nplot_y) 

 

 

DT 

Created by SPHYSICS_SWE in POUTE_1D.f or POUTE_2D.f 

UNIT=19 

The following variables are recorded: 

time dtnew 

 

Description: 

time: Time instant (in seconds) 

dtnew: Time step corresponding to next step. 

 

RESTART 

Created by SPHYSICS_SWE  in SPHYSICS_SWE_1D/2D.f 

UNIT=44 

The following variables are recorded: 

itime time ngrab dt 

 

Description: 

itime: Number of iterations since the beginning of the run. 

time: Time instant (in seconds). 

ngrab: Recording instant. 

dt: Time step 

 

3.2.2.3. Subroutines 

All subroutines in SPHYSICS_SWE_gen are placed in the same source file, however 

SPHYSICS_SWE ones are placed in different source files. A short description of each 

possible subroutine follows. 

 

filename subroutine name subroutine 

called 

called by purpose 

ac ac 
celij, celij_vir, 

celij_ob, self 
step 

sweeps over 

link list grid 

to compute 

accelerations 

ac_alpha ac_alpha 

celij_alpha, 

celij_alpha_vir, 

celij_alpha_ob, 

ac_dw 

sweeps over 

link list grid 

to compute 
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self_alpha alpha 

ac_b ac_b celij_b_c, celij_b source_slope 

sweeps over 

link list grid 

to compute 

bottom 

gradient 

ac_corr ac_corr 
celij_corr, 

self_corr 
ac_dw 

sweeps over 

link list grid 

to compute 

kernel 

gradient 

correction 

ac_dw_var ac_dw 

celij_dw, 

self_dw, 

celij_dw_vir, 

celij_dw_ob, 

ac_alpha, 

ac_corr, 

grid_h_var 

step 

sweeps over 

link list grid 

to compute d 

and h 

ac_dw_var_hj ac_dw_hj 

celij_dw, 

self_dw, 

celij_dw_vir, 

celij_dw_ob, 

ac_alpha, 

grid_h_var, loop 

step 

sweeps over 

link list grid 

to compute d 

and h when 

splitting is 

activated 

bottom bottom celij_hb step 

sweeps over 

link list grid 

to compute 

bottom 

elevation 

celij_alpha celij_alpha kernel ac_alpha 
 

celij_alpha_ob celij_alpha_ob kernel ac_alpha 
 

celij_alpha_vir celij_alpha_vir kernel ac_alpha 
 

celij_b celij_b kernel ac_b 
 

celij_balsara celij 
limiter, balsara, 

kernel 
ac 

 

celij_balsara_ob celij_ob 
limiter, balsara, 

kernel 
ac 

 

celij_b_c celij_b_c kernel ac_b 
 

celij_corr celij_corr kernel ac_corr 
 

celij_dw celij_dw kernel ac_dw 
 

celij_dw_hj celij_dw kernel ac_dw 
 

celij_dw_ob celij_dw_ob kernel ac_dw 
 

celij_dw_vir celij_dw_vir kernel ac_dw 
 

celij_hb celij_hb kernel bottom 
 

celij_ob celij_ob kernel, viscosity ac 
 

celij_vir celij_vir kernel, viscosity ac 
 

celij_vir_balsara celij_vir 
limiter, balsara, 

kernel 
ac 

 

celij_visc celij 
limiter, kernel, 

viscosity 
ac 

 

check_limits check_limits 

new_ob_flp, 

new_fl_ob, 

new_bcp 

step, sph 
 

divide divide 
 

step Link – list 
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creation for 

fluid 

particles 

divide_b divide_b 
 

sph 

Link – list 

creation for 

bottom 

particles 

divide_ob divide_ob 
 

sph 

Link – list 

creation for 

open 

boundary 

particles 

divide_vir divide_vir 
 

sph 

Link – list 

creation for 

virtual 

particles 

getdata getdata 
 

sph 
Reads the 

initial data 

grid_h_var grid_h_var 

ini_divide, 

divide, 

divide_vir, 

divide_ob 

ac_dw 

Creation of 

hte 2h grid 

with size 

hmax 

ini_divide ini_divide 
 

grid_h_var 
 

interp_openbc interp_openbc 
 

step 

Interpolates 

open 

boundary 

condition 

kernel_cubic kernel_cubic 
 

Any self*.f and 

celij*.f 

subroutines 

Cubic kernel 

limiter_minmod   

celij_visc,  

celij_balsara,  

self_visc,  

self_balsara 

Minmod 

limiter 

limiter_noMUSCL   

celij_visc,  

celij_balsara,  

self_visc,  

self_balsara 

No limiter 

loop loop 
 

ac_dw 

Optimization 

o the d and h 

calculation 

when 

splitting is 

activated 

open_bc open_bc 
 

sph, step 

Updates 

physical 

quantities in 

the buffer 

zones 

open_bc_pos open_bc_pos 
 

step 

Updates 

open 

boundary 

particle 

velocities 

and positions 

poute poute 
 

sph 
Output 

PART*f iles 

poute_grid poute_grid 
 

sph 
Oputput in 

*.grd files 
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recount recount 
 

step 
 

refinement refinement 
 

sph 
Split 

particles 

refinement_v refinement_v 
 

sph 

Compute the 

velocity of 

split particles 

riemann_balsara balsara  

celij_balsara, 

celij_balsara_o

b, 

celij_vir_balsar

a, self_balsara 

Balsara 

stabilization 

method 

self_alpha self_alpha kernel ac_alpha 
 

self_alpha_hj self_alpha kernel ac_alpha 
 

self_balsara self_balsara 
limiter, balsara, 

kernel 
ac 

 

self_corr self_corr kernel ac_corr 
 

self_dw celij_dw kernel ac_dw 
 

self_dw_hj celij_dw kernel ac_dw 
 

self_visc celij 
limiter, kernel, 

viscosity 
ac 

 

source_slope source_slope ac_b step 

Compute 

gradient of 

the bed 

elevation, 

and fiction 

source term 

SPHYSICS_SWE_2D sph 

ini_divide, 

divide_b, 

divide_ob, 

divide_vir, 

getdata, 

check_limits 

 
Main  

step_leap_frog step 

variable_time_ste

p, ac, 

source_slope, 

interp_openbc, 

open_bc_pos, 

refinement, 

ini_divide, 

divide, 

divide_vir, 

divide_ob, 

check_limits, 

recount, bottom, 

ac_dw, open_bc, 

refinement_v 

  

variable_time_step 
variable_time_st

ep  
step 

CFL 

condition to 

compute 

timestep 

viscosity_artifici

al 
viscosity 

 

celij_ob, 

celij_vir, celij, 

self 

Artificial 

viscosity 

viscosity_LF viscosity 
 

celij_ob, 

celij_vir, celij, 

self 

Lax-

Friedrichs 

flux 
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4. TEST CASES 

 

4.1. Running the model 

Creating and running executable files can be done step by step by the user (compiling 

the different source files, putting them in a certain directory and executing the codes 

while typing the values of the different variables and options when prompted). 

Nevertheless, this process can become tedious, especially when running different 

realizations of the same case with small differences in a small number of parameters. 

The entire process can be automatically done, although with some differences on 

different computer systems. Here we will show two examples for WINDOWS and 

LINUX. 

 

NOTE: the default Compiler chosen is INTEL IFORT for WINDOWS, which is option 

3 near the end of each Case file. 

 

4.1.1. Compiling and executing on Linux 

 

SPHYSICS_SWE also currently supports the following fortran compilers that have 

been tested on Linux platforms,  

 

1. gfortran, a free Fortran 95/2003 compiler that can be downloaded from 

http://gcc.gnu.org/wiki/GFortran. 

2. The non-commercial Intel ® Fortran Compiler can be downloaded from  

http://www.intel.com website. 

 

In order to run SPHYSICS_SWEon Linux, gfortran, ifort and the GNU make utility 

need to be installed and available in the default search path (typically /usr/bin or 

/usr/local/bin). The following paragraphs explain the procedure to compile and run the 

2D version of SPHYSICS_SWE. The procedure is exactly the same for the 1-D version. 

 

Compiling SPHYSICS_SWE_gen 

 

In the SWE-SPHysics_2D/source/SPHYSICS_SWE_gen_2D directory there are 

two Makefiles named SPHysicsgen_gfortran.makand SPHysicsgen_ifort.mak. As 

their names suggest, they are used to compileSPHYSICS_SWE_genusing the 

gfortran and ifort compilers respectively. The gfortran Makefile can be executed 

using the command 'make -f Makefile_gfortran.mak'. The Makefile, 

1. compiles SPHYSICS_SWE_gen 

2. checks for existence of SPHysics_2D/execs and SWE-

SPHysics_2D/execs.bak directories. If non-existent these directories are 

created. 

3. moves the previous version of the SPHYSICS_SWE_gen executable, if 

available, from the execs directory to execs.bak directory 
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4.  moves the latest compiled version of SPHYSICS_SWE_gen to the execs 

directory. 

 

Running SPHYSICS_SWE_gen_2D and SPHYSICS_SWE_2D 

 

As mentioned before, SPHYSICS_SWE_gen_2D, based on the options chose by the 

user, generates the Makefile, SPHysics.mak, to compile the main program SPHysics. 

The subroutines tocompile_gfortran and tocompile_ifort, in 

SPHYSICS_SWE_gen_2D, write out SPHysics.mak for gfortran and ifort 

compilers respectively.  

 

There are linux batch files located in the four 2D example directories,  

run_directory/CaseN, where N=1,2,3,4. These batch files are named 

CaseN_unix_gfortran.bat (N=1,2,3,4) . Similar linux batch files are located in 

the 2D example directories.  

 

The following table gives a detailed description of the commands used in the script file 

Case1_unix_gfortran.bat which is located in SWE-

SPHysics_2D/run_directory/Case1. This batch file can be executed, while in 

the Case1 directory, by typing Case1_unix_gfortran.bat at the command prompt. 

 

COMMAND COMMENTS 

cd ../../source/ SPHYSICS_SWE_gen_2D/  

 

Change to source directory in order to 

compile SPHysicsgen using 

SPHysicsgen.mak  

make -f SPHYSICS_SWE_gen_gfortran.mak 

clean   

Remove any preexisting object files  

 

make -f SPHYSICS_SWE_gen_gfortran.mak Compile and generate 

SPHYSICS_SWE_gen_2D using 

SPHysicsgen.mak. This Makefile 

compiles and places the 

SPHysicsgen_2D executable in the 

execs directory and moves the older 

executable to the execs.bak 

directory. 

cd ../../run_directory/Case1 Change to the Case1 example directory. 

../../execs/ SPHYSICS_SWE_gen_2D< 

Case1.txt > Case1.out  

Run SPHYSICS_SWE_gen_2D with 

Case1.txt as the input file instead of 

command line input. The output from 

the execution is  redirected in Case1.out 
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cp SPHysics.mak 

../../source/SPHYSICS_SWE_2D 

Copy the generated Makefile to the 

SPHysics2D source directory. 

cd ../../source/SPHYSICS_SWE_2D Change to source directory in order to 

compile SWE-SPHysics using 

SPHysics.mak 

make -f SPHysics.mak clean Remove any preexisting object files 

 

make -f SPHysics.mak Compile and generate 

SPHYSICS_SWE_2D using 

SPHysics.mak. Similar to the Makefiles 

for SPHYSICS_SWE_gen_2D, this 

Makefile compiles and places the 

SPHYSICS_SWE_2Dexecutable in the 

execs directory and moves the older 

executable to the execs.bak directory 

rm SPHysics.mak Remove the Makefile from the source/ 

SPHYSICS_SWE_2D directory. 

cd ../../run_directory/Case1 Change to the Case1 example directory. 

../../execs/SPHYSICS_SWE_gen_2D Execute SPHysics_2D and direct the 

output from the run to sph.out 

 

 

4.1.2. Compiling and executing on Windows. 

 

In the SWE-SPHysics_2D/source/SPHYSICS_SWE_gen_2D directory there are 

two Makefiles named SPHysicsgen_win_ifort.mak and SPHysicsgen_ftn95.mak. 

Theyare used to compile SPHYSICS_SWE_gen_2D using the INTEL IFORT 

compiler and Silverfrost FTN95 compiler (previously Salford Fortran).  

 

As mentioned before, SPHYSICS_SWE_gen_2D, based on the options chose by the 

user, generates the Makefile, SPHysics.mak, to compile the main program SPHysics. 

The subroutine tocompile_windows and tocompile_ftn95, in 

SPHYSICS_SWE_gen_2D, write out SPHysics.mak for ifortand silverfrost ftn95 

compilers respectively. 

 

There are windows batch files located in the example directories.  The batch file 

Case1_windows_ifort.bat located in SWE-SPHysics_2D\run_directory\Case1 

(see Fig. 3.1) is used. Similar batch files correspond to other 2D examples.  Examples 

corresponding to 1D calculations can be found in SWE-

SPHysics_1D\run_directory\Case1 
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The user should, while in the Case1 directory, write Case1_windows_ifort.bat on a 

command window.  The content of this file is briefly describe in next table. 

 

COMMAND COMMENTS 

del *.exe Remove previous executable files. 

cd ..\..\source\SPHYSICS_SWE_gen_2D 

 

 

 

Change to the directory  

containing the 

SPHYSICS_SWE_gen_2Dsource files  

 

 

NMAKE/f"SPHYSICS_SWE_gen_win_ifort.m

ak"  

 

 

NMAKE /f "SPHysicsgen.mak" is 

used to compile 

SPHYSICS_SWE_gen_2D.exe. 

cd ..\..\ run_directory\Case1 Change directory 

copy..\..\execs\ SPHYSICS_SWE_gen_2D.exe 

SPHYSICS_SWE_gen_2D.exe 

Copy SPHYSICS_SWE_gen_2D.exe 

file to the working directory. 

SPHYSICS_SWE_gen_2D.exe <Case1.txt > 

Case1.out 

Run SPHYSICS_SWE_gen_2D.exe. 

This program creates the initial 

conditions and select the options of 

the run. In addition, it also creates a 

file SPHysics.mak that can be used to 

compile the SPHYSICS_SWE_2Dcode 

with the right options. 

Any name can be used for the input 

and output files 

copy SPHysics.mak 

 

..\..\source\SPHYSICS_SWE_2D\SPHysics.mak 

Copy the SPHysics.mak file to the 

place where the 

SPHYSICS_SWE_2Dsource files are 

located.  

cd ..\..\execs\ Change to the directory where the 

executable file will be created.  

del *.obj Remove previous object files 

del SPHYSICS_SWE_2D.exe Remove previous executable versions 

of SPHYSICS_SWE_2D.exe 

cd..\source\ SPHYSICS_SWE_2D Change to the directory containing the 

SPHYSICS_SWE_2Dsource files 

NMAKE /f "SPHysics.mak"  NMAKE /f "SPHysics.mak" is used to 

compile SPHysics_2D.exe. There are 

multiple options to compile 

SPHYSICS_SWE_2D.exe. They are 

automatically selected depending on 

the initial conditions provided by the 
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input file (Case1.txt in this example). 

The file SPHysics.mak, which is 

automatically created by 

SPHYSICS_SWE_gen_2D.exe, 

contains information about those 

options. 

cd ..\..\ run_directory\Case1 Change directory 

copy ..\..\execs\ SPHYSICS_SWE_2D.exe 

SPHYSICS_SWE_2D.exe  

Copy SPHYSICS_SWE_2D.exe file to 

the working directory 

SPHYSICS_SWE_2D.exe  >sph.out Run the case. 

Any name can be used for the output 

file sph.out 

 

4.2. 1-D Test Cases 

 

4.2.1 Test case 1: 1D Wet-bed Dam break 

 

The case can be run using Case1.bat: (Case1_windows_ifort.bat, 

Case1_windows_ftn95.bat, Case1_unix_gfortran.bat   or  

Case1_unix_ifort.bat) whose output directory is Case1. The input file Case1.txt is 

located in the output directory. The information contained in that file can be 

summarized as follows:  

 

 
Figure 4.1: Initial configuration of Case1. 

 

0 Choose Starting options:  0=new, 1=restart 

0 debug activated: 1 - for yes (detailed output at every timestep) 0 for no 

1000. fluid density (1000 kg/m3 for water) 

2 

stabilization term 1 - artificial viscosity, 2 - Lax Friedrich's flux, 3 - two shocks 

Riemann solver 

2. valule of alpha (useful just for artificial viscosity) 

0 0 - No MUSCL reconstruction, 1 - MUSCL reconstruction 

1.E-3 tolerance in the Newton - Raphson algorithm (suggested 1.E-3) 

1 number of time steps for Newton - Raphson iterative procedure (suggested 10) 

50 maximum number of iterations in the Newton - Raphson iterative procedure 

1 variable time step: 1 for yes, 2 for no 
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10. time step, or maximum time step if variable time step activated 

0.4 Courant number 

10. output interval (seconds) 

50.1 End of the simulation (seconds) 

0. time step for intitial output (seconds) 

1.2 smoothing length coefficient: h=dx*coef (suggested 1.2) 

2000. length of the domain (m) 

0 open boundaries: 0 =no, 2 =downstream, 1 =upstream, 3=both 

1 Choose Bed Profile: 1=Plane Slope 

10. Distance between bottom particles (m) 

0. from 0 to xini the bottom is flat, xini (m) 

0. initial beach elevation between 0 and xini (m) 

0. beach slope (degree) 

0. x-coordinate for the beginning of the block 

1000. x-coordinate for the end of the block 

10. water surface elevation at the beginning of the block 

10. water surface elevation at the end of the block 

0. velocity at the beginning of the block 

0. velocity at the end of the block 

10. particle spacing for this block 

1 adding another block 

1000. x-coordinate for the beginning of the block 

2000. x-coordinate for the end of the block 

5. water surface elevation at the beginning of the block 

5. water surface elevation at the end of the block 

0. velocity at the beginning of the block 

0. velocity at the end of the block 

20. particle spacing for this block 

0 adding another block 

1 Which compiler is desired? (1=gfortran, 2=ifort, 3=CVF, 4=Silv 

1 1 for single precision, 2 for double precision 

 

 
 

Figure 4.2: Velocity and Depth plots for Case1. 

 

 

4.2.2. Test case 2: 1D Dry-bed Dam break 

 

The case can be run using Case2.bat whose output directory is Case2. The input file 

Case2_DryBed_DamBreak.txt is located in the output directory. The information 

contained in that file can be summarized as follows:  
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0 Choose Starting options:  0=new, 1=restart 

0 debug activated: 1 - for yes (detailed output at every timestep) 0 for no 

1000. fluid density (1000 kg/m3 for water) 

2 

stabilization term 1 - artificial viscosity, 2 - Lax Friedrich, 3 - two shocks Riemann 

solver 

2. valule of alpha (useful just for artificial viscosity) 

1 0 - No MUSCL reconstruction, 1 - MUSCL reconstruction 

1.E-3 tolerance in the Newton - Raphson algorithm (suggested 1.E-3) 

1 number of time steps for Newton - Raphson iterative procedure (suggested 10) 

50 maximum number of iterations in the Newton - Raphson iterative procedure 

1 variable time step: 1 for yes, 2 for no 

10. time step, or maximum time step if variable time step activated 

0.4 Courant number 

10. output interval (seconds) 

50.1 End of the simulation (seconds) 

0. time step for intitial output (seconds) 

1.2 smoothing length coefficient: h=dx*coef (suggested 1.2) 

2000. length of the domain (m) 

0 open boundaries: 0 =no, 2 =downstream, 1 =upstream, 3=both 

1 Choose Bed Profile: 1=Plane Slope 

10. Distance between bottom particles (m) 

0. from 0 to xini the bottom is flat, xini (m) 

0. initial beach elevation between 0 and xini (m) 

0. beach slope (degree) 

0. x-coordinate for the beginning of the block 

1000. x-coordinate for the end of the block 

10. water surface elevation at the beginning of the block 

10. water surface elevation at the end of the block 

0. velocity at the beginning of the block 

0. velocity at the end of the block 

10. particle spacing for this block 

0 adding another block 

1 Which compiler is desired? (1=gfortran, 2=ifort, 3=win_ifort, 4=Silverfost) 

1 1 for single precision, 2 for double precision 

 

 
Figure 4.3: Case2 water depths using Lax-Friedrich stabilization terms (Vacondio et al. 

2011b) t = 10, 20, 30, 50 s. 
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Figure 4.4:Case2 depth-averaged velocities using Lax-Friedrich stabilization terms 

(Vacondio et al. 2012a) t = 10, 20, 30, 50 s. 

 

 

4.2.3  Test case 3: 1-D Flow over a hump with Inflow-Outflow Boundary 

Conditions 

 

The case can be run using Case3.bat whose output directory is Case3. The input file 

Case3.txt is located in the output directory.  

 

Note: There are THREE test cases here demonstrating the effects of changing the 

outflow boundary conditions (see README file).   

 

1. Case3a - Transcritical Flow 

Sub-critical inflow & Sub-critical outflow 

 

2. Case3b - Transcritical Flow 

Sub-critical inflow & Super-critical outflow 

 

3. Case3c - Super-critical Flow 

Super-critical inflow & Super-critical outflow 

 

DEFAULT input file is Case3a.txt 

 

ALL .bat files load Case3.txt, so to run 

 

(i)   Case3a COPY Case3a.txt to Case3.txt  

(ii)  Case3b COPY Case3b.txt to Case3.txt  

(iii) Case3c COPY Case3c.txt to Case3.txt 

 

The information contained in that file can be summarized as follows:  
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0 Choose Starting options:  0=new, 1=restart 

0 debug activated: 1 - for yes (detailed output at every timestep) 0 for no 

1000. fluid density (1000 kg/m3 for water) 

2 

stabilization term 1 - artificial viscosity, 2 - Lax Friedrich's flux, 3 - two shocks 

Riemann solver 

2. valule of alpha (useful just for artificial viscosity) 

1 0 - No MUSCL reconstruction, 1 - MUSCL reconstruction 

1.E-3 tolerance in the Newton - Raphson algorithm (suggested 1.E-3) 

1 number of time steps for Newton - Raphson iterative procedure (suggested 10) 

50 maximum number of iterations in the Newton - Raphson iterative procedure 

1 variable time step: 1 for yes, 2 for no 

10. time step, or maximum time step if variable time step activated 

0.4 Courant number 

1. output interval (seconds) 

50.1 End of the simulation (seconds) 

0. time step for intitial output (seconds) 

1.2 smoothing length coefficient: h=dx*coef (suggested 1.2) 

10. length of the domain (m) 

3 open boundaries: 0 =no, 2 =downstream, 1 =upstream, 3=both 

2 kind of open boundary upstream: 2 for inflow or 3 - for outflow 

0.05 dx for upstream bc (m) 

0.1 water surface elevation for upstream bc (m) 

4. velocity for upstream bc (m/s) 

5 kind of open boundary downstream: 4 for inflow or 5 - for outflow 

0.05 dx for downstream bc (m) 

0.1 water surface elevation for downstream bc(m) 

4. velocity for downstream bc (m/s) 

2 Choose Bed Profile 2 - Parabolic 

0.05 distance between bottom particles (m) 

5 parabola equation y-y0=h0*[(x-x0)/a]**2, x0 parameter (m) 

0.2 parabola equation y-y0=h0*[(x-x0)/a]**2, y0 parameter (m) 

2. parabola equation y-y0=h0*[(x-x0)/a]**2, a parameter (m) 

-0.2 parabola equation y-y0=h0*[(x-x0)/a]**2, h0 parameter (m) 

0 x-coordinate for the beginning of the block (m) 

10 x-coordinate for the end of the block (m) 

0.3 water surface elevation at the beginning of the block (m) 

0.3 water surface elevation at the end of the block (m) 

4. velocity at the beginning of the block (m/s) 

4. velocity at the end of the block (m/s) 

0.05 particle spacing for this block (m) 

0 Add another block (1=yes) 

1 Which compiler is desired? (1=gfortran, 2=ifort, 3=win_ifort, 4=Silverfrost) 
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(a) 

 
(b) 

 
(c) 

 

Figure 4.5 Inflow-Outflow over a hump (a) transcritical flow, (b) subcritical inflow & 

supercritical outflow, (c) supercritical inflow & outflow (Vacondio et al. 2012b) 

 

4.3. 2-D Test Cases 

 

 

4.3.1 Test case 1: 2-D Thacker Basin – rotating surface  

 

Thacker (1981) provides analytical solutions for shallow water flow in basins.  This test 

case simulated by Vacondio et al. (2012a) shows good agreement with the analytical 

solution for an initially sloping water surface rotating around a parabolic basin. 
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Figure 4.6: Case4 2-D Thacker Basin (Vacondio et al., 2012a), water surface and 

contours 

 
0 Choose Starting options:  0=new, 1=restart 

0 debug activated: 1 - for yes (output at every timestep) 0 for no 

1000. fluid density (1000 kg/m3 for water) 

2 stabilization term 1 - artificial viscosity, 2 - Lax Friedrichs flux, 3 - two shocks Riemann solver 

2. value of alpha (useful just for artificial viscosity) 

0.001 minimum depth for the friction source term 

1 0 - No MUSCL reconstruction, 1 - MUSCL reconstruction 

1.E-3 tolerance in the Newton - Raphson algorithm (suggested 1.E-3) 

10 number of time steps for Newton - Raphson iterative procedure (suggested 10) 

50 maximum number of iterations in the Newton - Raphson iterative procedure 

1 variable time step: 1 for yes, 2 for no 

10. time step, or maximum time step if variable time step activated 

0.4 Courant number 

67.5 output interval (seconds) 

1350.1 End of the simulation (seconds) 

0. time step for intitial output (seconds) 

1.2 smoothing length coefficient: h=dx*coef (suggested 1.2) 

10000. x length of the domain (m) 
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10000. y - length of the domain (m) 

60. x size of the regular grid for output 

60. y size of the regular grid for output 

0 open boundaries: 1 for yes, 0 for no 

0 Closed boundaries: 1 for yes, 0 for no 

2 Choose Bed Profile  2 = Parabolic basin 

3000. Eq. is y=h0*( x**2+y**2 )/a**2, parameter a: 

10. Eq. is y=h0*( x**2+y**2 )/a**2, parameter h0: 

10000. length of the domain 

10000. heigth of the domain 

50. bottom particle spacing 

1.2 coefficient for the smoothing length (sugg. 1.2) 

0. manning coefficient 

1 Choose fluid particle distribution 1 square blocks, 2 circular distribution 

3000. initial position of the block, x - coord 

0. initial position of the block, y - coord 

7000. length of the block 

10000. heigth of the block 

0.83333 water surface elevation at South - West (m) 

2.416.667 water surface elevation at South - East (m) 

0.83333 water surface elevation at North - West (m) 

2.416.667 water surface elevation at North - East (m) 

0. x - velocity component at South - West (m) 

0. x - velocity component at South - East (m) 

0. x - velocity component at North - West (m) 

0. x - velocity component at North - East (m) 

-700.357 y - velocity component at South - West (m) 

-700.357 y - velocity component at South - East (m) 

-700.357 y - velocity component at North - West (m) 

-700.357 y - velocity component at North - East (m) 

50. particle spacing for this block (m) 

0 Add another block (1=yes) 

0 refinement procedure 1 for yes 0 for no 

120 size of the grid for refinement along x direction (m) 

120 size of the grid for refinement along y direction (m) 

0.00 minimum water depth for splitting (m) 

1 Which compiler is desired? (1=gfortran, 2=ifort, 3=win_ifort, 4=Silverfrost FTN95) 

1 1 for single precision, 2 for double precision 

 

 

4.3.2 Test case 2: 2-D Tsunami Wave with Inflow-Outflow Boundary Conditions 

 

1993 Okushiri tsunami 

The Okushiri tsunami in 1993 produced flooding of the coast near Monai, Japan, and 

was later investigate by a physical model built to 1:400 scale with dimensions 5.448 × 

3.402 m. The incoming wave was induced in the wave tank by a mechanical paddle 

placed at x=0 andthe water elevation was measured by three gauges at locations: (4.521, 

1.196), (4.521, 1.696) and (4.521, 2.196). The experimental data are available until the 

reflected wave reaches thepaddle (22.5 s after the beginning of the experiment). The 

registereddatasets are available at the Third International Workshop on Long Wave 

Run-up Models (2004) website. 

This test case has been simulated by Vacondio et al. (2012b) and includes a number of 

difficult aspects: open and closed boundaries, irregular bathymetry, wetting and drying 

fronts and complex shape of the reflected waves. 
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Figure 4.7: Case4 2-D Tsunami with Inflow-Outflow open boundaries (Vacondio et al. 

2012b) Water surface and contour snapshots 

 
0 Choose Starting options:  0=new, 1=restart 

0 debug activated: 1 - for yes (output at every timestep) 0 for no 

1000. fluid density (1000 kg/m3 for water) 

2 stabilization term 1 - artificial viscosity, 2 - Lax Friedrichs flux, 3 - two shocks Riemann solver 

2. valule of alpha (useful just for artificial viscosity) 

0.001 minimum depth for the friction source term 

1 0 - No MUSCL reconstruction, 1 - MUSCL reconstruction 

1.E-3 tolerance in the Newton - Raphson algorithm (suggested 1.E-3) 

1 number of time steps for Newton - Raphson iterative procedure (suggested 10) 

50 maximum number of iterations in the Newton - Raphson iterative procedure 

1 variable time step: 1 for yes, 2 for no 

10. time step, or maximum time step if variable time step activated 

0.4 Courant number 

0.2 output interval (seconds) 

22.51 End of the simulation (seconds) 

0. time step for intitial output (seconds) 

1.2 smoothing length coefficient: h=dx*coef (suggested 1.2) 
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5.448 x length of the domain (m) 

3.402 y - length of the domain (m) 

0.01 x size of the regular grid for output 

0.01 y size of the regular grid for output 

  

1 open boundaries: 1 for yes, 0 for no 

0.009375 minimum distance between particles in the buffer zone (m) 

1 number of boundary conditions 

3 kind of open boundary condition: 2 for inflow, 3 for outflow 

0. x-coordinate for the beginning of the openbc (m) 

0. y-coordinate for the beginning of the openbc (m) 

3.402 length of the bc (m) 

1. x - coord of the unit vector normal to the bc 

0. y - coord of the unit vector normal to the bc 

1. 1 if z is exiting from the plane x-y, -1 if it is entering in the plane x-y 

0.01875 dx for open boundary particles (m) 

1 steady bc 0 for yes, 1 for no 

tsunami_obc filename with open boundaries 

  

1 closed boundaries: 1 for yes, 0 for no 

1 do you want to add a straight closed boundary? 1 for yes 

0. starting point x - coord (m) 

0. starting point y - coord (m) 

1 marker starting point 

5.448 endpoint x - coord (m) 

0. endpoint y - coord (m) 

1 marker endpoint point 

0.009375 distance between virtual particles (sugg. 0.5 dx) 

0. unit vector pointing inside the domain, x coord 

1. unit vector pointing inside the domain, y coord 

  

1 closed boundaries: 1 for yes, 0 for no 

0. starting point x - coord (m) 

3.402 starting point y - coord (m) 

1 marker starting point 

5.448 endpoint x - coord (m) 

3.402 endpoint y - coord (m) 

1 marker endpoint point 

0.009375 distance between virtual particles (sugg. 0.5 dx) 

0. unit vector pointing inside the domain, x coord 

-1. unit vector pointing inside the domain, y coord 

  

1 closed boundaries: 1 for yes, 0 for no 

5.448 starting point x - coord (m) 

0. starting point y - coord (m) 

1 marker starting point 

5.448 endpoint x - coord (m) 

3.402 endpoint y - coord (m) 

1 marker endpoint point 

0.009375 distance between virtual particles (sugg. 0.5 dx) 

-1. unit vector pointing inside the domain, x coord 

0. unit vector pointing inside the domain, y coord 

  

0 do you want to add another closed boundary? 1 for yes 0 for no 

0 do you want to add a circular closed boundary 0 for no 

  

3 Choose Bed Profile 3 = Load Bed Profile from File 

tsunami_bed Enter filename of Bed Profile 

  

1 Choose fluid particle distribution 1 = square blocks 

0. initial position of the block, x - coord 

0. initial position of the block, y - coord 

5.448 length of the block 

3.402 heigth of the block 

.13535 water surface elevation at South - West (m) 

.13535 water surface elevation at South - East (m) 

.13535 water surface elevation at North - West (m) 

.13535 water surface elevation at North - East (m) 
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0. x - velocity component at South - West (m) 

0. x - velocity component at South - East (m) 

0. x - velocity component at North - West (m) 

0. x - velocity component at North - East (m) 

0. y - velocity component at South - West (m) 

0. y - velocity component at South - East (m) 

0. y - velocity component at North - West (m) 

0. y - velocity component at North - East (m) 

0.01875 particle spacing for this block (m) 

0 Add another block (1=yes) 

  

0 refinement procedure 1 for yes 0 for no 

0.02 size of the grid for refinement along x direction (m) 

0.02 size of the grid for refinement along y direction (m) 

0.001 minimum water depth for splitting (m) 

  

1 Which compiler is desired? (1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95) 

1 1 for single precision, 2 for double precision 

 

4.3.3. Test case 3: 2-D Dry-Bed Dam Break with Particle Splitting 

 

 
Figure 4.8: Case4 2-D Dam Break from University of Parma with particle splitting at 

dam exit: Water surface and velocity vector snapshots 

 
0 Choose Starting options:  0=new, 1=restart 

0 debug activated: 1 - for yes (output at every timestep) 0 for no 
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1000. fluid density (1000 kg/m3 for water) 

2 stabilization term 1 - artificial viscosity, 2 - Lax Friedrichs flux, 3 - two shocks Riemann solver 

2. valule of alpha (useful just for artificial viscosity) 

0.001 minimum depth for the friction source term 

1 0 - No MUSCL reconstruction, 1 - MUSCL reconstruction 

1.E-3 tolerance in the Newton - Raphson algorithm (suggested 1.E-3) 

1 number of time steps for Newton - Raphson iterative procedure (suggested 10) 

50 maximum number of iterations in the Newton - Raphson iterative procedure 

1 variable time step: 1 for yes, 2 for no 

10. time step, or maximum time step if variable time step activated 

0.4 Courant number 

0.1 output interval (seconds) 

5.01 End of the simulation (seconds) 

0. time step for intitial output (seconds) 

1.2 smoothing length coefficient: h=dx*coef (suggested 1.2) 

2.60 x length of the domain (m) 

1.20 y - length of the domain (m) 

0.015 x size of the regular grid for output 

0.015 y size of the regular grid for output 

0 open boundaries: 1 for yes, 0 for no 

  

1 closed boundaries: 1 for yes, 0 for no 

1 do you want to add a straight closed boundary? 1 for yes 

0. starting point x - coord (m) 

0. starting point y - coord (m) 

1 marker starting point 

0.8 endpoint x - coord (m) 

0. endpoint y - coord (m) 

1 marker endpoint point 

0.0075 distance between virtual particles (sugg. 0.5 dx) 

0. unit vector pointing inside the domain, x coord 

1. unit vector pointing inside the domain, y coord 

  

1 do you want to add another closed boundary? 1 for yes 0 for no 

0.825 starting point x - coord (m) 

0. starting point y - coord (m) 

1 marker starting point 

2.60 endpoint x - coord (m) 

0. endpoint y - coord (m) 

1 marker endpoint point 

0.0075 distance between virtual particles (sugg. 0.5 dx) 

0. unit vector pointing inside the domain, x coord 

1. unit vector pointing inside the domain, y coord 

  

1 do you want to add another closed boundary? 1 for yes 0 for no 

2.60 starting point x - coord (m) 

0. starting point y - coord (m) 

1 marker starting point 

2.60 endpoint x - coord (m) 

1.20 endpoint y - coord (m) 

1 marker endpoint point 

0.0075 distance between virtual particles (sugg. 0.5 dx) 

-1. unit vector pointing inside the domain, x coord 

0. unit vector pointing inside the domain, y coord 

  

1 do you want to add another closed boundary? 1 for yes 0 for no 

2.60 starting point x - coord (m) 

1.20 starting point y - coord (m) 

1 marker starting point 

0.825 endpoint x - coord (m) 

1.20 endpoint y - coord (m) 

1 marker endpoint point 

0.0075 distance between virtual particles (sugg. 0.5 dx) 

0. unit vector pointing inside the domain, x coord 

-1. unit vector pointing inside the domain, y coord 

  

1 do you want to add another closed boundary? 1 for yes 0 for no 

0.8 starting point x - coord (m) 
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1.20 starting point y - coord (m) 

1 marker starting point 

0. endpoint x - coord (m) 

1.20 endpoint y - coord (m) 

1 marker endpoint point 

0.0075 distance between virtual particles (sugg. 0.5 dx) 

0. unit vector pointing inside the domain, x coord 

-1. unit vector pointing inside the domain, y coord 

  

1 do you want to add another closed boundary? 1 for yes 0 for no 

0. starting point x - coord (m) 

1.20 starting point y - coord (m) 

1 marker starting point 

0. endpoint x - coord (m) 

0. endpoint y - coord (m) 

1 marker endpoint point 

0.0075 distance between virtual particles (sugg. 0.5 dx) 

1. unit vector pointing inside the domain, x coord 

0. unit vector pointing inside the domain, y coord 

  

1 do you want to add another closed boundary? 1 for yes 0 for no 

0.8 starting point x - coord (m) 

0. starting point y - coord (m) 

1 marker starting point 

0.8 endpoint x - coord (m) 

0.45 endpoint y - coord (m) 

0 marker endpoint point 

0.0075 distance between virtual particles (sugg. 0.5 dx) 

-1. unit vector pointing inside the domain, x coord 

0. unit vector pointing inside the domain, y coord 

  

1 do you want to add another closed boundary? 1 for yes 0 for no 

0.8 starting point x - coord (m) 

0.75 starting point y - coord (m) 

0 marker starting point 

0.8 endpoint x - coord (m) 

1.2 endpoint y - coord (m) 

1 marker endpoint point 

0.0075 distance between virtual particles (sugg. 0.5 dx) 

-1. unit vector pointing inside the domain, x coord 

0. unit vector pointing inside the domain, y coord 

  

1 do you want to add another closed boundary? 1 for yes 0 for no 

0.825 starting point x - coord (m) 

0.75 starting point y - coord (m) 

0 marker starting point 

0.825 endpoint x - coord (m) 

1.2 endpoint y - coord (m) 

1 marker endpoint point 

0.0075 distance between virtual particles (sugg. 0.5 dx) 

+1. unit vector pointing inside the domain, x coord 

0. unit vector pointing inside the domain, y coord 

  

1 do you want to add another closed boundary? 1 for yes 0 for no 

0.825 starting point x - coord (m) 

0. starting point y - coord (m) 

1 marker starting point 

0.825 endpoint x - coord (m) 

0.45 endpoint y - coord (m) 

0 marker endpoint point 

0.0075 distance between virtual particles (sugg. 0.5 dx) 

1. unit vector pointing inside the domain, x coord 

0. unit vector pointing inside the domain, y coord 

  

1 do you want to add another closed boundary? 1 for yes 0 for no 

0.8 starting point x - coord (m) 

0.45 starting point y - coord (m) 

0 marker starting point 
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0.825 endpoint x - coord (m) 

0.45 endpoint y - coord (m) 

0 marker endpoint point 

0.0075 distance between virtual particles (sugg. 0.5 dx) 

0. unit vector pointing inside the domain, x coord 

1. unit vector pointing inside the domain, y coord 

  

1 do you want to add another closed boundary? 1 for yes 0 for no 

0.8 starting point x - coord (m) 

0.75 starting point y - coord (m) 

0 marker starting point 

0.825 endpoint x - coord (m) 

0.75 endpoint y - coord (m) 

0 marker endpoint point 

0.0075 distance between virtual particles (sugg. 0.5 dx) 

0. unit vector pointing inside the domain, x coord 

-1. unit vector pointing inside the domain, y coord 

  

0 do you want to add another closed boundary? 1 for yes 0 for no 

0 do you want to add a circular closed boundary 0 for no 

  

1 Choose Bed Profile 1 = flat bed in blocks 

0. initial position of the block, x - coord 

0. initial position of the block, y - coord 

2.60 length of the block 

1.20 heigth of the block 

0.015 bottom particle spacing 

1.2 coefficient for the smoothing length (sugg. 1.2) 

0.007 manning coefficient of the block 

0. constant elevation of the block 

0 do you want to add another block 1 for yes 

  

1 Choose fluid particle distribution 1 = square blocks 

0. initial position of the block, x - coord 

0. initial position of the block, y - coord 

0.8 length of the block 

1.2 heigth of the block 

0.15 water surface elevation at South - West (m) 

0.15 water surface elevation at South - East (m) 

0.15 water surface elevation at North - West (m) 

0.15 water surface elevation at North - East (m) 

0. x - velocity component at South - West (m) 

0. x - velocity component at South - East (m) 

0. x - velocity component at North - West (m) 

0. x - velocity component at North - East (m) 

0. y - velocity component at South - West (m)0.7975 

0. y - velocity component at South - East (m) 

0. y - velocity component at North - West (m) 

0. y - velocity component at North - East (m) 

0.015 particle spacing for this block (m) 

0 Add another block (1=yes) 

  

1 refinement procedure 1 for yes 0 for no 

0.4 eta coefficient for refined particle, distance  (suggested 0.4) 

0.9 alpha coefficient for refined particle, smoothing length  (suggested 0.9) 

0.005 size of the grid for refinement along x direction (m) 

0.005 size of the grid for refinement along y direction (m) 

0.0001 minimum water depth for splitting (m) 

0.7 x_min_ref_lim (m) 

0.4535 y_min_ref_lim (m) 

0.8 x_max_ref_lim (m) 

0.7465 y_max_ref_lim (m) 

0.9 Ratio of initial (max Area before splitting)/(Area) before splitting 

1 Add another block for refinement(1=yes) 

  

0.7 x_min_ref_lim (m) 

0.35 y_min_ref_lim (m) 

0.79 x_max_ref_lim (m) 
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0.4530 y_max_ref_lim (m) 

0.9 Ratio of initial (max Area before splitting)/(Area) before splitting 

1 Add another block for refinement(1=yes) 

  

0.7 x_min_ref_lim (m) 

0.7430 y_min_ref_lim (m) 

0.79 x_max_ref_lim (m) 

0.85 y_max_ref_lim (m) 

0.9 Ratio of initial (max Area before splitting)/(Area) before splitting 

0 Add another block for refinement(1=yes) 

  

1 Which compiler is desired? (1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95) 

1 1 for single precision, 2 for double precision 

 

4.3.4. Test case 4: 2-D CADAM Case with 45° Channel 

 

 
Figure 4.9: Case4 2-D Dam Break from University of Parma with particle splitting at 

dam exit: Water surface and velocity vector snapshots (Vacondio et al. 2012a) 

 
0 Choose Starting options:  0=new, 1=restart 

0 debug activated: 1 - for yes (output at every timestep) 0 for no 

1000. fluid density (1000 kg/m3 for water) 

2 stabilization term 1 - artificial viscosity, 2 - Lax Friedrichs flux, 3 - two shocks Riemann solver 

2. valule of alpha (useful just for artificial viscosity) 

0.001 minimum depth for the friction source term 

1 0 - No MUSCL reconstruction, 1 - MUSCL reconstruction 

1.E-3 tolerance in the Newton - Raphson algorithm (suggested 1.E-3) 

1 number of time steps for Newton - Raphson iterative procedure (suggested 1-10) 

50 maximum number of iterations in the Newton - Raphson iterative procedure 

1 variable time step: 1 for yes, 2 for no 

10. time step, or maximum time step if variable time step activated 

0.2 Courant number 

0.2 output interval (seconds) 

40.01 End of the simulation (seconds) 

0. time step for intitial output (seconds) 

1.2 smoothing length coefficient: h=dx*coef (suggested 1.2) 

9.59 x length of the domain (m) 

3.75 y - length of the domain (m) 

0.02 x size of the regular grid for output 
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0.02 y size of the regular grid for output 

0 open boundaries: 1 for yes, 0 for no 

  

1 closed boundaries: 1 for yes, 0 for no 

1 do you want to add a straight closed boundary? 1 for yes 

0. starting point x - coord (m) 

0. starting point y - coord (m) 

1 marker starting point 

2.39 endpoint x - coord (m) 

0. endpoint y - coord (m) 

1 marker endpoint point 

0.02475 distance between virtual particles (sugg. 0.5 dx) 

0. unit vector pointing inside the domain, x coord 

1. unit vector pointing inside the domain, y coord 

  

1 do you want to add another closed boundary? 1 for yes 0 for no 

2.39 starting point x - coord (m) 

0. starting point y - coord (m) 

1 marker starting point 

2.39 endpoint x - coord (m) 

0.445 endpoint y - coord (m) 

0 marker endpoint point 

0.02475 distance between virtual particles (sugg. 0.5 dx) 

-1. unit vector pointing inside the domain, x coord 

0. unit vector pointing inside the domain, y coord 

  

1 do you want to add another closed boundary? 1 for yes 0 for no 

2.39 starting point x - coord (m) 

0.445 starting point y - coord (m) 

0 marker starting point 

6.64 endpoint x - coord (m) 

0.445 endpoint y - coord (m) 

1 marker endpoint point 

0.02475 distance between virtual particles (sugg. 0.5 dx) 

0. unit vector pointing inside the domain, x coord 

1. unit vector pointing inside the domain, y coord 

  

1 do you want to add another closed boundary? 1 for yes 0 for no 

6.64 starting point x - coord (m) 

0.445 starting point y - coord (m) 

1 marker starting point 

957.449 endpoint x - coord (m) 

337.949 endpoint y - coord (m) 

0 marker endpoint point 

0.02475                d istance between virtual particles (sugg. 0.5 dx) 

-.707107 unit vector pointing inside the domain, x coord 

.707107 unit vector pointing inside the domain, y coord 

  

1 do you want to add another closed boundary? 1 for yes 0 for no 

0. starting point x - coord (m) 

0. starting point y - coord (m) 

1 marker starting point 

0. endpoint x - coord (m) 

2.44 endpoint y - coord (m) 

1 marker endpoint point 

0.02475 distance between virtual particles (sugg. 0.5 dx) 

1. unit vector pointing inside the domain, x coord 

0. unit vector pointing inside the domain, y coord 

  

1 do you want to add another closed boundary? 1 for yes 0 for no 

0. starting point x - coord (m) 

2.44 starting point y - coord (m) 

1 marker starting point 

2.39 endpoint x - coord (m) 

2.44 endpoint y - coord (m) 

1 marker endpoint point 

0.02475 distance between virtual particles (sugg. 0.5 dx) 

0. unit vector pointing inside the domain, x coord 
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-1. unit vector pointing inside the domain, y coord 

  

1 do you want to add another closed boundary? 1 for yes 0 for no 

2.39 starting point x - coord (m) 

2.44 starting point y - coord (m) 

1 marker starting point 

2.39 endpoint x - coord (m) 

0.94 endpoint y - coord (m) 

0 marker endpoint point 

0.02475 distance between virtual particles (sugg. 0.5 dx) 

-1. unit vector pointing inside the domain, x coord 

0. unit vector pointing inside the domain, y coord 

  

1 do you want to add another closed boundary? 1 for yes 0 for no 

2.39 starting point x - coord (m) 

0.94 starting point y - coord (m) 

0 marker starting point 

64.335 endpoint x - coord (m) 

0.94 endpoint y - coord (m) 

0 marker endpoint point 

0.02475 distance between virtual particles (sugg. 0.5 dx) 

0. unit vector pointing inside the domain, x coord 

-1. unit vector pointing inside the domain, y coord 

  

1 do you want to add another closed boundary? 1 for yes 0 for no 

64.335 starting point x - coord (m) 

0.94 starting point y - coord (m) 

0 marker starting point 

9.22 endpoint x - coord (m) 

372.954 endpoint y - coord (m) 

0 marker endpoint point 

0.02475 distance between virtual particles (sugg. 0.5 dx) 

+.707107 unit vector pointing inside the domain, x coord 

-.707107 unit vector pointing inside the domain, y coord 

  

0 do you want to add another closed boundary? 1 for yes 0 for no 

0 do you want to add a circular closed boundary 0 for no 

  

1 Choose Bed Profile 1 = flat bed in blocks 

0. initial position of the block, x - coord 

0. initial position of the block, y - coord 

2.39 length of the block 

2.44 heigth of the block 

0.0495 bottom particle spacing 

4.8 coefficient for the smoothing length (sugg. 1.2) 

0.01 manning coefficient of the block 

0. constant elevation of the block 

1 do you want to add another block 1 for yes 

  

2.39 initial position of the block, x - coord 

0.445 initial position of the block, y - coord 

2. length of the block 

0.495 heigth of the block 

0.0495 bottom particle spacing 

4.8 coefficient for the smoothing length (sugg. 1.2) 

0.01 manning coefficient of the block 

0.33 constant elevation of the block 

1 do you want to add another block 1 for yes 

  

4.39 initial position of the block, x - coord 

0. initial position of the block, y - coord 

5.61 length of the block 

4.5 heigth of the block 

0.0495 bottom particle spacing 

4.8 coefficient for the smoothing length (sugg. 1.2) 

0.01 manning coefficient of the block 

0.33 constant elevation of the block 

0 do you want to add another block 1 for yes 
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1 Choose fluid particle distribution 1 = square blocks 

0. initial position of the block, x - coord 

0. initial position of the block, y - coord 

2.39 length of the block 

2.44 heigth of the block 

0.58 water surface elevation at South - West (m) 

0.58 water surface elevation at South - East (m) 

0.58 water surface elevation at North - West (m) 

0.58 water surface elevation at North - East (m) 

0. x - velocity component at South - West (m) 

0. x - velocity component at South - East (m) 

0. x - velocity component at North - West (m) 

0. x - velocity component at North - East (m) 

0. y - velocity component at South - West (m) 

0. y - velocity component at South - East (m) 

0. y - velocity component at North - West (m) 

0. y - velocity component at North - East (m) 

0.0495 particle spacing for this block (m) 

0 Add another block (1=yes) 

1 refinement procedure 1 for yes 0 for no 

0.4 eta coefficient for refined particle, distance (suggested 0.4) 

0.9 alpha coefficient for refined particle, smoothing length (suggested 0.9) 

0.02 size of the grid for refinement along x direction (m) 

0.02 size of the grid for refinement along y direction (m) 

0.001 minimum water depth for splitting (m) 

1.90 x_min_ref_lim (m) 

0.455 y_min_ref_lim (m) 

2.50 x_max_ref_lim (m) 

0.90 y_max__ref_lim (m) 

0.9 Ratio of initial (max Area before splitting)/(Area) before splitting 

  

1 Add another block for refinement(1=yes) 

1.90 x_min_ref_lim (m) 

0.04 y_min_ref_lim (m) 

23.653 x_max_ref_lim (m) 

0.455 y_max__ref_lim (m) 

0.9 Ratio of initial (max Area before splitting)/(Area) before splitting 

  

1 Add another block for refinement(1=yes) 

1.90 x_min_ref_lim (m) 

0.90 y_min_ref_lim (m) 

23.653 x_max_ref_lim (m) 

1.385 y_max__ref_lim (m) 

0.9 Ratio of initial (max Area before splitting)/(Area) before splitting 

  

0 Add another block for refinement(1=yes) 

1 Which compiler is desired? (1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95) 

1 1 for single precision, 2 for double precision 



43 

5. HOW TO CHANGE SWE-SPHysics FOR YOUR APPLICATION 

 

 

5.1 Introduction 

When people start using the SPHysics codes, we often get asked if the code can do a 

particular function that is not included in the demonstration cases.  The answer we give 

is normally yes, but the particular functionality required may require some re-coding.  

We do not normally propose to do this re-coding ourselves unless the application area 

coincides closely with our own area and current projects, or there is a bug.  The reason 

behind this is that SPHysics softwares primarily research codes and we have released 

what we have found useful for our own research.  As the code is research oriented, it is 

up to the user to adapt the code and the subroutines to their satisfaction. 

 

This short section is aimed at helping those people who want to change the code for 

their own purposes.  Figure 5.1 displays the main structure of the code.  Here, we list 

which subroutines in the code you should examine for possible modification.  

Important Note: if you create any new subroutines for the main source code, you must 

include the names of these new files in the “make files” used for compiling the code 

which are written in subroutines tocompile_win_ifort, 

tocompile_ftn95,tocompile_gfortran, tocompile_ifort in  

SPHYSICS_SWE_gen_1D/2D.f.  Read Section 3.2.2.3 to see where each of the 

subroutines is compiled. 

 

Changing the boundary conditions. 

Boundary conditions are treated in each celij & self subroutines.  Any 

modification to the boundary conditions should be done in these subroutines. 

Changing the timestepping algorithm 

The timestepping is performed in all of the step subroutines: 

step_leap_frog_1D/2D.f.  These subroutines then call subroutines ac which 

control the sweep across the particles (or 2h grid) for each (part of the) timestep. 

Changing the kernel calculation 

The smoothing kernel and its derivatives are calculated in the kernel subroutines:  

kernel_cubic_1D/2D.f.   

Changing the viscous formulation 

The viscous terms are all calculated in the viscosity subroutines which are called 

from celij & self:   

viscosity_artificial_1D/2D.f  &  viscosity_LF_1D/2D.f. 

Loading in data files and setting useful parameters 

If you wish to examine and modify what data SWE-SPHysics loads initially, all the 

useful data is imported in subroutine getdata_1D/2D.f   Furthermore, all the 

useful parameters that remain the same throughout the simulation are calculated 

here such as the kernel normalization factors, etc.  All global variables are defined 

in global_1D/2D.f. 

Zeroing variables 
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Many variables that are evaluated throughout the timestep, such as the accelerations, 

ax, ay, az are zeroed initially in the different ac subroutines: ac_1D/2D.f. 

Changing the input bathymetry 

SWE-SPHysicscan use both (i) special shapes available 

inSPHYSICS_SWE_gen_1D/2D.f and (ii) arbitrary bed/bottom geometries 

(bathymetries) which are loaded via input files in the format of CSV files with XYZ 

data + smoothing length & roughness coefficients.  Case4_Tsunami uses a file 

called “tsunami_bed”. 

Particle refinement 

SWE-SPHysicscan split particles according to pre-defined criteria (see Vacondio et 

al. 2011b).  In the code, this is controlled in subroutine refinement_2D.f and 

refinement_v_2D.f. 
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5.2 Code Structure 

SPHYSICS_SWE 

getdata 

step 

variable_time_step (CFL condition) 

ac (ax,ay) 

celij 

self 

Time 
step 
LOOP 

Repeat for each time-stepping scheme and for 
each filter (density, kernel correction) 

poute (data output) 
poute_grid (data output on a grid) 

kernel, 
viscosity 

source slope  celij_b kernel 

vel. and position update 

refinement (particle splitting) 

divide (link – list) 

bottom (bottom elevation b) 

ac_dw (iterative procedure for d h) 

Figure 5.1  Outline of code structure 

5.3 Main Variables 

 

Here we present a table of the main variables (or those with less than obvious names) 

and the counterpart in equations: 

 

SPHysics variable SPHquantity 

udot(i), vdot(i) 
t

v

t

aa

d

d

d

d
r

=
v

 

dH_SPH_x(i), dH_SPH_y(i) 
b

x

∂

∂
, 

b

y

∂

∂  
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ar(i) 
t

a

d

d ρ
 

cs(i) ac  

drx, dry ( )baab xxx −= , ( )baab yyy −=  

dux, duy ( )baab uuu −= , ( )baab vvv −=  

frxi, frxj, fryi, fryj 
a

ab

x

W

∂

∂
, 

b

ba

x

W

∂

∂
, ab

a

W

y

∂

∂
, ba

b

W

y

∂

∂
 

pm(j) bm  

pVol(j) 
b

b

b

m
V

ρ
=  

h_t(i) b 

rhop(i) aρ  

dw(i) d 

h_var(i) h 

rhop_sum ∑∑ =
b

abb

b b

b
abb Wm

m
W

ρ
ρ  

rr2 
2

ijr  

sum_wab ∑
b b

b

ab

m
W

ρ
 

up(i), vp(i) ( ),a a a av u v= =v
r

 

xp(i), yp(i) ( ),a a a ar x y= =r
r

 

Wab ( )baab rrWW
rr

−=  
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6. VISUALIZATION 

 

To visualize the results obtained from SWE-SPHysics simulations, some basic post-

processing programs have been provided in the SWE-SPHysics_1D/Post-

Processing and SWE-SPHysics_2D/Post-Processing directories.  

 

Detailed README files, explaining the procedure to view the results using Matlab and 

Paraview, are available in those directories. The user is encouraged to read these 

README files prior to using the visualization programs. 

 

6.1 Using Matlab 

To view the results using Matlab, start Matlab and navigate to a 

run_directory/CaseN.   

To visualise 1-D results at the command prompt type (and then hit enter): 

SPHYSICS_SWE_1D_Plot 

 

To visualise 2-D results at the command prompt type (and then hit enter): 

SPHYSICS_SWE_2D_Plot 

 

In each case, enter the required information and the plotting routine will the ncycle 

through the frames producing images such as those for the 2-D Thacker Basin: 

 

 
Figure 6.1 Example output images using Matlab 

 

 

6.2 Using Paraview (open-source) 2-D only 

To view the results using the open-source Paraview software (www.paraview.org), the 

SWE-SPHysics output files, PART_0001, etc., must be converted to VTK format. 

 

1. For windows or linux, there are different commands: 

(i) Linux with gfortran: Enter  

./PART2VTU_SWE_unix_gfortran.bat 

(ii) Linux with ifort: Enter 

./PART2VTU_SWE_unix_ifort.bat 

(iii)Windows with ifort: Enter 

./PART2VTU_SWE_windows_ifort.bat 
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(iv) Windows with ftn95: Enter 

./PART2VTU_SWE_windows_ftn95.bat 

 

2. Start Paraview and navigate to run_directory/CaseN/ParaviewFiles/VTU/ 

3. Open VTUinp.pvd and click  

4. Open ibottom.vtu and click  

5. Use the “Warp by Scalar” filter (Menu: Filters→Alphabetical→Warp by Scalar) 

and Select “Elevation” to scale the water surface and bed profiles as desired: 

 

 

 
 

 

Figure 6.2 Using Paraview and “Warp by Scalar” to display in Paraview 

 

No paraview routines are provided for 1-D. 
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