

January 2010

M.G. Gesteira (mggesteira@uvigo.es)
B.D. Rogers (benedict.rogers@manchester.ac.uk)

R.A. Dalrymple (rad@jhu.edu)
A.J.C. Crespo (alexbexe@uvigo.es)

M. Narayanaswamy (muthu@jhu.edu)

2

3

Acknowledgements

The development and application of SPHysics were partially supported by:
- Xunta de Galicia under project PGIDIT06PXIB383285PR.
- Office of Naval Research, Geosciences Program
- EPSRC Project Grant GR/S28310
- ESPHI (An European Smooth Particle Hydrodynamics Initiative) project

supported by the Commission of the European Communities (Marie Curie
Actions, contract number MTKI-CT-2006-042350).

- Flood Risk Management Research Consortium (FRMRC) Phase 2, EPSRC
Grant F020511

- Research Councils UK (RCUK) Research Fellowship

4

5

Abstract
This report documents the computer program SPHysics based on
Smoothed Particle Hydrodynamics theory. The documentation
provides a brief description of the governing equations and the
different numerical schemes used to solve them. FORTRAN code is
provided for two and three- dimensional versions of the model. Post-
processing tools for MATLAB visualization are also provided.
Finally, several working examples are documented to enable the user
to test the program and verify that it is installed correctly.

6

7

Contents

1. THEORETICAL BACKGROUND 9

1.1. The SPH method 9
1.2. The weighting function or smoothing kernel 9
1.3. Momentum equation 10

1.3.1. Artificial viscosity 10
1.3.2. Laminar viscosity 11
1.3.3. Laminar viscosity and SPS 11

1.4. Continuity equation 12
1.5. Equation of state 12
1.6. Moving the particles 13

 1.7. Thermal energy 13
 1.8. Density Reinitialization 13
 1.9. Kernel Renormalization 14
 1.9.1. Kernel Correction 15
 1.9.2. Kernel Gradient Correction 15
 1.10. Riemann Solver formulation 16
 1.10.1. Definition of the Riemann Problem. 16
 1.10.2 Non-conservative Riemann Formulation. 18
 1.10.3 Conservative Riemann Formulation. 19
 1.10.4 The HLLC Approximate Riemann Solver. 19
 1.10.5 Higher-order Reconstruction and MUSCL-based schemes 20

2. IMPLEMENTATION 23

2.1. Time stepping 23
2.1.1. Predictor-Corrector scheme 23
2.1.2. Verlet scheme 24
2.1.3. Symplectic scheme 24
2.1.4. Beeman scheme 24

2.2. Variable time step 25
2.3. Computational efficiency: linked list 25
2.4. Boundary conditions 27

2.4.1. Dynamic Boundary conditions 27
2.4.2. Repulsive Force Boundary Conditions 29
2.4.3. Periodic Open Boundaries 30
2.4.4. Floating Objects 31

2.5. Checking limits 32
2.5.1. Fixing the limits 32
2.5.2. Changing the limits in Z+ 33
2.5.3. Limits in X, Y or Z- directions 33

2.6. Restart runs & checkpointing (repetitive restarts) 34

8

3. USER’S MANUAL 35
3.1. Installation 35
3.2. Program outline 35

3.2.1. SPHysicsgen 37
3.2.1.1. Creating compiling options 37
3.2.1.2. Input files 38
3.2.1.3. Output files 38
3.2.1.4. Subroutines 45

3.2.2. SPHysics 47
3.2.2.1. Input files 47
3.2.2.2. Output files 47
3.2.2.3. Subroutines 49

4. TEST CASES 53

4.1. Running the model 53
4.1.1. Compiling and executing on Linux and Mac OS 53
4.1.2. Compiling and executing on Windows 55

4.2. Test case 1: 2D Dam break in a box 57
4.3. Test case 2: 2D Dam break evolution over a wet bottom in a box. 60
4.4. Test case 3: Waves generated by a paddle in a beach 63

4.4.1. Case 2D 63
4.4.2. Case 3D 66

4.5. Test case 4: Tsunami generated by a sliding Wedge 68
4.5.1. Case 2D 68
4.5.2. Case 3D 71

4.6. Test case 5: 3D dam-break interaction with a structure 73
4.7. Test case 6: Floating bodies in waves 77

4.7.1. Case 2D 77
4.7.2. Case 3D 81

4.8. Test case 7: Focused wave group approaching trapezoid 84
4.8.1. Case 2D 84
4.8.2. Case 3D 87

4.9. Test case 8: Floating bodies with 2D Periodicity 89

5. HOW TO CHANGE SPHysics FOR YOUR APPLICATION 93

6. VISUALIZATION 97

7. REFERENCES 97

8. APPENDIX: SPS Turbulence Model 101

9. PUBLICATIONS USING SPHysics CODE 104

9

1. THEORY

1.1. The SPH method

The main features of the SPH method, which is based on integral interpolants, are
described in detail in the following papers (Monaghan, 1982; Monaghan, 1992; Benz,
1990; Liu, 2003; Monaghan, 2005). Herein we will only refer to the representation of
the constitutive equations in SPH notation. In SPH, the fundamental principle is to

approximate any function)(rA r
 by

∫ −= '),'()'()(rdhrrWrArA rrrrr

(1.1)

where h is called the smoothing length and),'(hrrW
rr − is the weighting function or

kernel. This approximation, in discrete notation, leads to the following approximation of
the function at a particle (interpolation point) a,

ab
b

b

b
b W

A
mrA

ρ∑=)(
r

(1.2)

where the summation is over all the particles within the region of compact support of
the kernel function., The mass and density are denoted by mb and ρb respectively and

),(hrrWW baab
rr −= is the weight function or kernel.

1.2. The weighting function or smoothing kernel

The performance of an SPH model is critically dependent on the choice of the
weighting functions. They should satisfy several conditions such as positivity, compact
support, and normalization. Also, Wab must be monotonically decreasing with
increasing distance from particle a and behave like a delta function as the smoothing
length, h, tends to zero (Monaghan, 1992; Benz, 1990; Liu, 2003). Kernels depend on
the smoothing length, h, and the non-dimensional distance between particles given by q
= r / h, r being the distance between particles a and b. The parameter h, often called
influence domain or smoothing domain, controls the size of the area around particle a
where contribution from the rest of the particles cannot be neglected.

In SPHysics, the user can choose from one of the following four different kernel
definitions:

1) Gaussian:

()2exp),W(qhr D −= α (1.3)

where αD is)(1 2hπ in 2D and)(1 32/3 hπ in 3D

10

2) Quadratic:

() 20
4

3

4

3

16

3
,W 2 ≤≤

 +−= qqqhr Dα (1.4)

where αD is)(2 2hπ in 2D and)4(5 3hπ in 3D

3) Cubic spline:

() ()

≥

≤≤−

≤≤+−

=

20

212
4

1

10
4

3

2

3
1

,W 3

32

D

q

qq

qqq

hr α (1.5)

where αD is 10/(7πh2) in 2D and 1/(πh3) in 3D.

4) Quintic (Wendland, 1995):

 () () 2012
2

1,W
4

≤≤+

 −= qq
q

hr Dα (1.6)

where αD is 7/(4πh2) in 2D and 21/16πh3) in 3D.

The tensile correction (Monaghan, 2000) is automatically activated when using kernels
with first derivatives that go to zero with decreasing inter-particle spacing.

1.3. Momentum equation

The momentum conservation equation in a continuum field is

Θ++∇−=
rrr

r

gP
Dt

vD

ρ
1

(1.7)

where Θ
r

 refers to the diffusion terms.
Different approaches, based on various existing formulations of the diffusive terms, can
be considered in the SPH method to describe the momentum equation. Three different
options for diffusion can be used in SPHysics: (i) artificial viscosity, (ii) laminar
viscosity and (iii) full viscosity (laminar viscosity+ Sub-Particle Scale (SPS)
Turbulence):

1.3.1. Artificial viscosity

The artificial viscosity proposed by Monaghan (1992) has been used very often due to
its simplicity. In SPH notation, Eq. 1.7 can be written as

gW
PP

m
dt

vd
aba

b
ab

a

a

b

b
b

a rr
r

+∇

Π++−= ∑ 22 ρρ

(1.8)

whereg
r

= (0, 0, -9.81) ms-2 is the gravitational acceleration.

11

The pressure gradient term in symmetrical form is expressed in SPH notation as

aba
b

2
a

a
2
b

b
b W

ρ

P

ρ

P
mP

ρ

1 ∇

+−=

∇− ∑

rr

a

(1.9)

with Pk and ρk are the pressure and density corresponding to particle k (evaluated at a or
b).
Πab is the viscosity term:

>

<−
=Π

00

0
ρ

µcα

ab

abab

abab

abab
ab

rv

rv

rr

rr

(1.10)

with 22 η
µ

+
=

ab

abab
ab r

rvh
r

rr

; where brrr aab

rrr −= , baab vvv
rrr −= ; being kr

r
 and kvr the position and

the velocity corresponding to particle k (a or b);
2

cc
c ba

ab

+
= . η2= 0.01h2, α is a free

parameter that can be changed according to each problem.

1.3.2. Laminar viscosity

The momentum conservation equation with laminar viscous stresses is given by

vgP
Dt

vD
O

rrr
r

21 ∇++∇−= υ
ρ

(1.11)

where the laminar stress term simplifies(Lo and Shao 2002) to:

() ab2

abba

abaab0

b
b

2
0 v

r)ρ(ρ

Wr4υ
mvυ

r
r

rr
r

+
∇=∇ ∑a

(1.12)

where 0υ is the kinetic viscosity of laminar flow (sm /10 26−).
So, in SPH notation, Eq. 1.11 can be written as:

ab2

abba

abaab0

b
baba

b
2
a

a
2
b

b
b

a v
r)ρ(ρ

Wr4υ
mW

ρ

P

ρ

P
m

dt

d r
r

rr
rr

r

+
∇++∇

+−= ∑∑ g

v

(1.13)

1.3.3. Laminar viscosity and Sub-Particle Scale (SPS) Turbulence

The Sub-Particle Scale (SPS) approach to modeling turbulence was first described by
Gotoh et al. (2001) to represent the effects of turbulence in their MPS model. See
Appendix for a brief description of the theory of Large-Eddy Simulation (LES) and
Sub-Grid Scale (SGS) models. The momentum conservation equation is,

τ∇+∇++∇−=
rrrr

r

ρ
vυgP

ρDt

vD 11 2
0

(1.14)

where the laminar term can be treated following Eq. 1.12 and τ represents the SPS
stress tensor.

12

The eddy viscosity assumption (Boussinesq’s hypothesis) is often used to model the
SPS stress tensor using Favre-averaging (for a compressible fluid):

2

ij
2

ijt
ij

δ
3

2
δ

3

2
2

ρ
SCkS ijIij ∆−

 −=ν
τ

, where ijτr is the sub-particle stress tensor,

[] Sl)(Cv st
2

∆= the turbulence eddy viscosity, k the SPS turbulence kinetic energy, Cs

the Smagorinsky constant (0.12), CI = 0.0066, ∆l the particle-particle spacing and

2
1

2)SS(S ijij= , ijS the element of SPS strain tensor.

So, following (Dalrymple & Rogers, 2006), Eq. 1.14 can be written in SPH notation as

aba
b

2
a

a
2
b

b
b

ab2

abba

abaab0

b
b

aba
b

2
a

a
2
b

b
b

a

W
ρρ

m

v
r)ρ(ρ

Wr4υ
m

W
ρ

P

ρ

P
m

dt

d

∇

++

+

+
∇+

+∇

+−=

∑

∑

∑

r

r
r

rr

rr
r

ττ

g
v

(1.15)

1.4. Continuity equation

Changes in the fluid density are calculated in SPHysics using

aba
b

abb
a Wvm

dt

d
∇=∑
rrρ

(1.16)

instead of using a weighted summation of mass terms (Monaghan, 1992), since it is
known to result in an artificial density decrease near fluid interfaces.

1.5. Equation of state

The fluid in the SPH formalism is treated as weakly compressible. This facilitates the
use of an equation of state to determine fluid pressure, which is much faster than
solving an equation such as the Poisson´s equation. However, the compressibility is
adjusted to slow the speed of sound so that the time step in the model (using a Courant
condition based the speed of sound) is reasonable. Another limitation on the
compressibility is imposed by the fact that the sound speed should be about ten times
faster than the maximum fluid velocity, thereby keeping density variations to within less
than 1%.
Following (Monaghan et al., 1999; Batchelor, 1974), the relationship between pressure
and density is assumed to follow the expression

−

= 1

ρ

ρ
BP

γ

0

(1.17)

13

where γ = 7 and, γρ0
2
0cB = being ρ0 = 1000 kg m-3 the reference density and

() ()
o

Pcc oo ρ
ρρ ∂∂== / the speed of sound at the reference density.

1.6. Moving the particles

Particles are moved using the XSPH variant (Monaghan, 1989)

ab
b ab

a
a W

ρ

m
ε

dt

d
b

bavv
r rr
r

∑+=
(1.18)

where ε=0.5 and 2)(baab ρρρ += . This method moves a particle with a velocity that is
close to the average velocity in its neighborhood.

1.7. Thermal energy

The thermal energy associated to each particle is calculated using the expression given
by Monaghan (1994)

abaabab
b

b

a

a

b
b

a Wv
PP

m
dt

de
∇

Ψ++= ∑

rr
222

1

ρρ
(1.19)

where abΨ refers to viscosity terms, which can be calculated using the different
approaches mentioned above.

1.8 Density Reinitialization

While the dynamics from SPH simulations are generally realistic, the pressure field of
the particles exhibits large pressure oscillations. Efforts to overcome this problem have
concentrated on several approaches including correcting the kernel (for an overview see
Bonet & Lok, 1999) and developing an incompressible solver. One of the most straight
forward and computationally least expensive is to perform a filter over the density of
the particles and the re-assign a density to each particle (Colagrossi and Landrini, 2003).
There are two orders of correction, zeroth order and first order.

Zeroth Order – Shepard Filter
The Shepard filter is a quick and simple correction to the density field, and the
following procedure is applied every 30 time steps

∑∑ ==
b

abb
b b

b
abb

new
a Wm

m
W

~~
ρ

ρρ (1.20)

14

where the kernel has been corrected using a zeroth-order correction:

∑
=

b b

b
ab

ab
ab m

W

W
W

ρ
~

~

(1.21)

First Order – Moving Least Squares (MLS)
The Moving Least Squares (MLS) approach was developed by Dilts (1999) and applied
successfully by Colagrossi and Landrini (2003) and by Panizzo (2004). This is a first-
order correction so that the linear variation of the density field can be exactly
reproduced:

∑∑ ==
b

MLS
abb

b b

bMLS
abb

new
a Wm

m
W

ρ
ρρ (1.22)

The corrected kernel is evaluated as follows:

() () () abbaaa
MLS

b
MLS

ab WrrrrWW rrrr −⋅== β (1.23)

so that in 2-D

() ()() ()()[] abbaazbaaxa
MLS

ab WzzrxxrrW −+−+= rrr
110 βββ (1.24)

where the correction vector β is given by

()

=

= −

0

0

1
1

1

1

0

A

z

xar

β
β
β

β r , where () b
b

ab VrW AA ~ ∑= r (1.25)

with the matrix A
~

being given by

() ()
() () ()()
() ()() ()

−−−−
−−−−

−−
=

2

2

1
~

babababa

babababa

baba

zzzzxxzz

xxzzxxxx

zzxx

A (1.26)

Similar to the Shepard filter this is applied every 30 time steps or similar. The
equations are similar in 3-D but just include the y-direction.

1.9 Kernel Renormalization

A periodic correction of the kernel function Wab is necessary in SPH hydraulics
computations, where a finite domain and a free surface are often part of the
computational domain. Particles near boundaries or the free surface have a kernel
smoothing function truncated due to the absence of neighboring particles. The
conditions of consistency and normalization fail. However it is still possible to handle
these situations by opportunely correcting the kernel function Wab itself or its gradient.
In SPHysics, there are two techniques to avoid errors from a corrupted interpolating
function:

15

1.9.1 Kernel correction.

The method was proposed by Bonet and Lok (1999) and, in an alternative form, by Liu
et al., (1997). The kernel is modified to ensure that polynomial functions are exactly
interpolated up to a given degree. In spite of the first-order correction (linear correction)
is described in detail in Bonet and Lok (1999), the same authors consider that the linear
correction is unsuitable for computational purposes. They also propose using constant,

rather than linear, correction. So, a vectorial variable (af
r

) can be expressed as

∑

∑
=

b
ab

b

b

b
abb

b

b

a

W
ρ

m

Wf
ρ

m

f

r

r

(1.27)

1.9.2 Kernel gradient correction.

The corrected kernel gradient abW∇~ should be used to calculate the forces in the

equation of motion instead of the normal kernel gradient abW∇ , being

abbab WLW ∇=∇
r~ (1.28)

1
aa ML −= (1.29)

)x(xW
ρ

m
M baab

num

b b

b
a −⊗∇=∑

(1.30)

where num is the number of particles interacting with particle a.
Considering, for the sake of clarity, a 2D medium, the diagonal elements of Ma are
defined positive since

)xx(
r

1

dr

dW
W ba

ab
ab

rr −=∇
(1.31)

with baab xxr rr −= resulting in

−−= ∑

=

num

1b

2
ba

abb

b
a)x(x

r

1

dr

dW

ρ

m
(1,1)M

(1.32)

with 0drdW < .

The same can be proved for

−−= ∑

=

num

1b

2
ba

abb

b
a)z(z

r

1

dr

dW

ρ

m
(2,2)M

(1.33)

On the other hand, aM
r

 is symmetric since

−−−== ∑

=

num

1b
baba

abb

b
aa)z)(zx(x

r

1

dr

dW

ρ

m
(2,1)M(1,2)M

(1.34)

16

Note that matrix M
r

and its inverse L

r

are equal to the identity matrix when the particle

a is placed far from the boundaries or the free- surface. In this case, there is no real
correction on the kernel gradient (on the force). Nevertheless, when the particle a is
placed near the boundaries or the free surface, the distribution of particles around it is

not symmetric anymore. Thus, both M
r

and L
r

are different from the identity matrix and

the kernel gradient is corrected following

∇
∇

=

∇
∇

z

x

aa

aa

z

x

W

W

(2,2)L(2,1)L

(1,2)L(1,1)L

W

W
~

~

(1.35)

where the subscripts x and z represent the spatial coordinates . Note that the correction
is anisotropic since the terms La(1,2) and La(2,1) involve both spatial coordinates.

1.10. Riemann Solver formulation

This section aims to introduce only the basic concepts behind including Riemann
solvers into SPH. For a full presentation of the theory underpinning Riemann solvers,
MUSCL upwinding and higher-order accurate schemes, the reader is referred to texts
such as Toro (2001), etc. The main advantage of introducing Riemann solvers into SPH
is that the pressure and velocity fluctuations present in so many of the SPH schemes for
water are removed (e.g. Rogers et al., 2009).

1.10.1 Definition of the Riemann Problem.

The Riemann problem is defined as a discontinuity located at location x0 in space:

()

>
≤

=
0

0,
xxf

xxf
txf

R

L (1.36)

where the subscripts L and R denote left and right states respectively. For example,
consider the simple case of the simple density discontinuity below:

 ρL

 ρR

 ρ

 x0 x
Figure 1.1 - Initial discontinuity in density

When this initial condition is evolved in time, a shock wave propagates to the right
while a rarefaction wave propagates to the left as shown in Figure 1.2a below. This can

17

be depicted in an x-t diagram which displays the shock propagating to the right as a
single line and the rarefaction wave spreading out to the right separating the left and
right regions. The region between the left and right regions is normally referred to as
the star region.

 ρL

 ρR

 ρ

 x0

Shock
wave

Rarefaction
wave

 x
(a) Propagation of initial discontinuity at time t = t1

 ρL

 ρR

 x0

Rarefaction
wave

 t

Star (*)
region

 t1

 x

Shock
wave

(b) x-t diagram

Figure 1.2 – Evolution of discontinuity in density

The solution to the Riemann problem is therefore the defined as all the states from the
left to right regions. Numerous solvers have since been proposed to solve for the
variables within the star region along with the speeds of the shock and rarefaction
waves. If the problem is one dimensional (or reducible to 1-D), it is possible to use an
exact Riemann solver, however, this is computationally expensive and so is generally
avoided. To circumvent this, a range of approximate Riemann solvers have been
proposed including the Osher, Random choice, Roe, HLLC, WAF approximate
Riemann solvers (see Toro 2001). The problem can then be solved in terms of the
primitive variables [ρ, u, v, w, e] (herein referred to as non-conservative), or the
conserved variables [ρ, ρu, ρv, ρw, E].

In SPHysics we have implemented both primitive and conservative variable Riemann
solvers.

18

1.10.2 Non-conservative Riemann Formulation.

In this formulation first proposed by Parshikov et al. (1999 & 2001) and later by Cha
and Whitworth (2003) as Godunov Particle Hydrodynamics (GPH), the main change
takes place with the pressure gradient term within the momentum equation. The reader
is referred to these papers for a more detailed description. Essentially, the sum of the
left and right pressures is replaced by the pressure within the star region, i.e.

() *2 abba PPP →+ . Hence the pressure gradient in the momentum equation is changed

from:

aba
b b

b

a

a
b

a W
PP

m
t

∇

+=∑

d

d
22 ρρ

v
 (1.37)

to:

aba
b ba

abb
a WPm

t
∇

+=∑

11
2

d

d
22

*

ρρ
v

 (1.38)

Alternatively, we can change the variationally consistent form (Vila, 1999; Bonet and
Lok 1999; Colagrossi et al. 2003)

aba
b ba

ba
b

a W
PP

m
t

∇

 +=∑
d

d

ρρ
v

 to aba
b ba

ab
b

a W
P

m
t

∇=∑
2

d

d *

ρρ
v

 (1.39)

A similar operation concerns the velocities resolved onto the line joining two particle

centres () *2 ab
R
b

R
a UUU →+ . Parshikov et al. define

⋅=

ba

baR

r
U

r
u so that the continuity

equation changes from

() aba
b

bab
a Wm

t
∇−=∑

d

d
uu

ρ
 (1.40)

to:

() aba
b

aabb
a Wm

t
∇−−= ∑ 2

d

d * uu
ρ

 (1.41)

The intermediate star values are approximated initially using an acoustic-based solver.
Denoting the values on the particles a and b as the left and right states, L and R,
respectively, the star regions are approximated as:

bbaa

ba
R
abb

R
baa

ab cc

PPUcUc
U

ρρ
ρρ

+
−++=* (1.42a)

()
bbaa

R
a

R
bbbaaabbbaa

ab cc

UUccPcPc
P

ρρ
ρρρρ

+
−−+=* (1.42b)

Hence, the SPH equations become:

() aba
b

aabb
a Wm

t
∇−−= ∑ 2

d

d * uu
ρ

 (1.43a)

19

termsviscousW
P

m
t aba

b ba

ab
b

a
2

d

d *

++∇=∑ g
v

ρρ
 (1.43b)

() aba
b

aab
ba

ab
b

a W
P

m
t

e ∇−−= ∑
2

d

d *
*

uu
ρρ

 (1.43c)

1.10.3 Conservative Riemann Formulation.

In this formulation, we use the work of Vila (1999) whereby the conventional SPH
formulation is replaced by one that solves a Riemann problem between each particle
pair with the equations expressed in terms of the conserved variables [ρ, ρu, ρv, ρw, E].
The inviscid Navier-Stokes equations are solved so that no viscous terms are required to
keep the scheme stable in contrast to our previous SPH schemes. We have chosen this
formulation since the pressure fields and wave propagation are more accurate than the
previous formulations used by the present authors (Dalrymple and Rogers, 2006). An
accurate wave profile and pressure field are essential for predicting the forces on
objects. More information on this formulation can be found in the papers of Vila (1999)
and Guilcher et al. (2007). The governing equations when expressed in SPH form are
given as:

()t
t a
a ,

d

d
xv

x = (1.44a)

aa
a v

t
⋅∇= ωω

d

d
 (1.44b)

() ()() 0,2
d

d 0
, =∇⋅−+ ∑

∈
abaababA

Pb
Abaaa Wt

t
xvvρωωρω (1.44c)

() ()()[] aaabaababAabAAA
Pb

baaaa fWtxp
t

ωρωωρω =∇−⊗++ ∑
∈

 ,2
d

d 00
,, vvvv (1.44d)

where subscript A denotes the result from the approximate Riemann solver, superscript
0 denotes the field value (i.e. the value at the particle itself), ωa is the volume of particle
a. This Riemann problem is solved using an HLLC approximate Riemann solver using
MUSCL-based upwinding (Toro, 2001). fa is the vector of external forces, for example,
gravity.

1.10.4 The HLLC Approximate Riemann Solver.

The HLLC Riemann solver used in SPHysics provides an approximate solution for Star
Region where the contact surface is reinstated (Toro et al. 1994). Now in the addition
to the left and right going waves, there is a contact surface within the Star Region so
that we also have star left and right regions *L and *R as shown in Figure 1.3. As we
are solving compressible flow equations where a contact discontinuity might exist, it is
important, therefore, to use a solver that captures this effect.

20

 ρL

 ρR

 x0

SL
Star (*)
region

 ρ*L ρ*R

S*

 x

SR

 t

Figure 1.3 - Wave solution for HLLC Riemann solver - x-t diagram

Defining Q = [ρ, ρu, ρv, ρw, E], and the wave speeds in the Left, Star and Right regions
as SL, S* and SR respectively, the solution to this is given as:

≤
≤≤
≤≤

≤

=

txSif

StxSif

StxSif

Stxif

RR

RR

LL

LL

HLLC

/

/

/

/

**

**

Q

Q

Q

Q

Q (1.45)

where

() ()[]

+−+

−
−=

− KKK

K

K

K

uS
p

K
E

K

K

K

KK
K

SuS

w

v

S

SS

uS

ρρ

ρ

**

*

*
*

1

Q . (1.46)

with the subscript K denoting left (K=L) or right (K=R), respectively. The wave speeds
are defined as follows:

LLLL qcuS −= , ** uS = , RRRR qcuS += , (1.47)

where for Tait’s or Morris’ equations of state

()
()

>

≤
=

−

−

Kc

pp

K

K ppif

ppif

q
KKK

KK
K

*

*

 1
2
1

2
*

**

ρρ

ρ
ρ (1.48)

1.10.5 Higher-order Reconstruction and MUSCL-based schemes.

It is well known in finite volume Godunov-type solvers that the first-order schemes are
dissipative. However, attempting to obtain a higher-order scheme just using simple
extrapolation leads to unphysical oscillation in the solution since this can lead to
overestimation of the variables between each computation point. Using an approach
similar to Monotone Upwind-centred Scheme for Conservation Laws (MUSCL) allows
us to extrapolate the data to be second order in space.

21

In SPHysics, this Riemann problem is solved using an HLLC approximate Riemann
solver using MUSCL-based upwinding Toro (2001) with a general β-limiter (Hirsch,
1998). For an arbitrary function Φ between two particles a and b, we construct the
Riemann problem left and right states either side of the midpoint using the gradient of
the constructed variable. Defining the gradient constructed variable differences as

abbb

baaa

r

r

2
1

2
1

⋅∇=∆
⋅∇=∆

φφ
φφ

,
(1.49)

the left and right Riemann states either side of the midpoint are then defined by

bb
R
b

aa
L
a

φφφ
φφφ

∆−=

∆+=
,

(1.50)

where aφ∆ and bφ∆ are given by

() ()[]
() ()[]

<∆∆∆∆∆
>∆∆∆∆∆

=∆∆ .
0 if,max,,max,0min

0 if,min,,min,0max
,

bbaba

bbaba
ba φφβφφφβ

φφβφφφβ
φφ

(1.51)

If either aφ∆ or bφ∆ is found to have a value greater than ba φφ −2
1 , then aφ∆ and

bφ∆ are further limited to ba φφ −2
1 . This is done to ensure that the values of L

aφ and
R
bφ always lie between the values of aφ and bφ . The left and right states are used as the

discontinuous states for the individual Riemann problem between particles a and b. For
a full description an understanding of Riemann solvers, the reader is referred to Toro
(2001). As is well known for Riemann solvers and higher-order schemes, the choice of
limiters can be sensitive.

22

23

2. IMPLEMENTATION

2.1. Time stepping

Four numerical schemes are implemented in SPHysics: (i) the Predictor-Corrector
algorithm described by Monaghan (1989); (ii) the Verlet algorithm (Verlet, 1967); (iii)
the Symplectic algorithm (Leimkhuler, 1997) and (iv) Beeman algorithm (Beeman,
1976).
Consider the momentum (1.7), density (1.16), position (1.18) and density of energy
(1.19) equations in the following form

aF
v r
r

=
dt

d a

(2.1a)

aD=
dt

d aρ

(2.1b)

aV
r r
r

=
dt

d a

(2.1c)

aE
e

=
dt

d a

(2.1d)

where aV
r

 represents the velocity contribution from particle a and from neighboring
particles (XSPH correction).

2.1.1. Predictor-Corrector scheme

 This scheme predicts the evolution in time as,

n
a

n
a

n
a F

t
vv

rrr

2
2/1 ∆+=+

;
n
a

n
a

n
a D

t

2
2/1 ∆+=+ ρρ

n
a

n
a

n
a V

t
rr

rrr

2
2/1 ∆+=+

;
n
a

n
a

n
a E

t
ee

2
2/1 ∆+=+

(2.2)

calculating)(2/12/1 ++ = n
a

n
a fP ρ according to Eq. 1.17.

These values are then corrected using forces at the half step

2/12/1

2
++ ∆+= n

a
n
a

n
a F

t
vv

rrr
;

2/12/1

2
++ ∆+= n

a
n
a

n
a D

tρρ

2/12/1

2
++ ∆+= n

a
n

a
n

a V
t

rr
rrr

;
2/12/1

2
++ ∆+= n

a
n
a

n
a E

t
ee

(2.3)

Finally, the values are calculated at the end of the time step following:
n
a

n
a

n
a vvv rrr −= ++ 2/11 2 ;

n
a

n
a

n
a ρρρ −= ++ 2/11 2

n
a

n
a

n
a rrr rrr −= ++ 2/11 2 ;

n
a

n
a

n
a eee −= ++ 2/11 2

(2.4)

Finally, the pressure is calculated from density using)(11 ++ = n
a

n
a fP ρ .

24

2.1.2. Verlet scheme

This time stepping algorithm, to discretize Equations 3.1a-d, is split into two parts:
In general, variables are calculated according to

n
a

n
a

n
a Ftvv

rrr ∆+= −+ 211
;

n
a

n
a

n
a tD∆+= −+ 211 ρρ
n

a
n

a
n

a
n

a FtVtrr
rrrr 21 5.0 ∆+∆+=+

;
n
a

n
a

n
a tEee ∆+= −+ 211

(2.5)

Once every M time steps (M on the order of 50 time steps), variables are calculated
according to

n
a

n
a

n
a Ftvv

rrr ∆+=+1
;

n
a

n
a

n
a tD∆+=+ ρρ 1

n

a
n

a
n

a
n

a FtVtrr
rrrr 21 5.0 ∆+∆+=+

;
n
a

n
a

n
a tEee ∆+=+1

(2.6)

This is to stop the time integration diverging since the equations are no longer coupled.

2.1.3. Symplectic scheme

Symplectic time integration algorithms are time reversible in the absence of friction or
viscous effects (Leimkhuler 1997) and hence represent a very attractive option for
meshless particle schemes. In this case, first, the values of density and acceleration are
calculated at the middle of the time step as:

,
d

d

2

,
d

d

2

2

1

2

1

t

rt
rr

t

t

n
an

a

n

a

n
an

a

n

a

∆+=

∆+=

+

+ ρρρ
 (2.7)

where the superscript n denotes time step and tnt ∆= . Pressure, 2

1+n

ap , is calculated

using the equation of state. In the second stage () tv
n

iii dd 2

1+
ρω gives the velocity and

hence position of particles at the end of the time step

() () ()
t

vt
vv

n
aaan

aaa
n

aaa d

d

2

2

1

2

1
1

+
++ ∆+= ρωρωρω ,

12
1

1

2
+++ ∆+= n

a

n

a
n
a v

t
rr .

(2.8)

At the end of the timestep tn
a dd 1+ρ is calculated using the updated values of 1+n

av and
1+n

ar (Monaghan 2005).

2.1.4. Beeman scheme

Beeman algorithm uses a Beeman predictor step and an Adams-Bashforth-Moulton
corrector step. This method is accurate to O(∆t4).

The predictor step is fulfilled using Beeman’s method as Capone et al. 2007:

25

12
1

5.05.1 −+ ∆−∆+= n
a

n
a

n
a

n

a FtFtvv
rrrr

12
1

5.05.1 −+ ∆−∆+= n
a

n
a

n
a

n

a tDtDρρ

1222
1

6
1

3
2 −+ ∆−∆+∆+= n

a
n

a
n

a
n

a

n

a FtFtVtrr
rrrrr

 12
1

5.05.1 −+ ∆−∆+= n
a

n
a

n
a

n

a tEtEee

(2.9)

calculating)(2/12/1 ++ = n
a

n
a fP ρ .

The corrector step is given by
12

11

12
1

12
8

12
5 −++ ∆−∆+∆+= n

a
n

a

n

a
n
a

n
a FtFtFtvv

rrrrr

12
11

12
1

12
8

12
5 −++ ∆−∆+∆+= n

a
n
a

n

a
n
a

n
a tDtDtDρρ

n
a

n

a
n

a
n

a
n

a FtFtVtrr
rrrrr 22

121

3
1

6
1 ∆+∆+∆+= ++

 12
11

12
1

12
8

12
5 −++ ∆−∆+∆+= n

a
n
a

n

a
n
a

n
a tEtEtEee

(2.10)

Finally, the pressure is calculated from density using)(11 ++ = n
a

n
a fP ρ .

2.2. Variable time step

Time-step control is dependant on the CFL condition, the forcing terms and the viscous

diffusion term (Monaghan; 1989). A variable time step tδ is calculated according to
Monaghan and Kos (1999):

)t,t(.t cvf ∆∆⋅=∆ min30 ; ()
a

af fht min=∆ ;
2max

min

ab

abab

b
s

a
cv

r

rvh
c

h
t

r

rr

+
=∆

(2.11)

Here ft∆ is based on the force per unit mass |fa|, and cvt∆ combines the Courant and the
viscous time-step controls.

2.3 Computational efficiency: link list.

In the code the computational domain is divided in square cells of side 2h (see Figure
2.1). following Monaghan and Latanzio (1985). Thus, for a particle located inside a cell,
only the interactions with the particles of neighboring cells need to be considered. In
this way the number of calculations per time step and, therefore, the computational time
diminish considerably, from N2 operations to N logN, N being the number of particles.

26

Figure 2.1: Set of neighboring particles in 2D. The possible neighbors of a fluid particle
are in the adjacent cells but this only interacts with particles marked by black dots.

The SPHysics code in 2D sweeps through the grid along the x-direction, for each z-
level. Around each cell, the E, N, NW & NE neighbouring cells are checked to
minimise repeating the particle interactions. Thus, for example, when the centre cell is
i=5 and k=3 (see scheme in Figure 2.2), the target cells are (5,4), (4,4), (6,4) and (6,3).
The rest of the cells were previously considered through the sweeping (e.g. the
interaction between cell (5,3) and (5,2) was previously accounted when (5,2) was
considered to be the centre cell).

ncx cells

N NE NW

E ik
ncz cells

Figure 2.2: Sweeping through grid cells in 2D. Starting from the lower left corner,
particles inside the center cell ik interact with adjacent cells only in E, N, NW and NE
directions. The interactions with the rest of the cells W, S, SW & SE directions were
previously computed using reverse interactions.

27

A similar protocol is used in 3D calculations (Figure 2.3).

Layer n

Layer n+1

Z

X

Y

Figure 2.3: Sweeping through grid cells in 3D. Only 13 out of 26 possible neighboring
cells are considered when centered on a particular ijk cell. The rest were previously
considered when centered on adjacent cells using reverse interactions.

Two link lists are considered in SPHysics. The first one tracks the boundary particles
and it is partially upgraded every time step. This is due to the fact that the only
boundary particles that change their position in time are the ones that describe moving
objects such as gates and wavemakers. The second link list corresponds to fluid
particles and is completely updated every time step.

2.4. Boundary conditions

Three boundary conditions have been implemented in SPHysics: (i) Dynamic Boundary
conditions (Crespo et al, 2007; Dalrymple and Knio, 2000); (ii) Repulsive boundary
conditions (Monaghan & Kos, 1999; Rogers & Dalrymple 2008) and (iii) Periodic open
boundary conditions:

2.4.1. Dynamic Boundary conditions

In this method, boundary particles are forced to satisfy the same equations as fluid
particles. Thus, they follow the momentum equation (Eq. 1.7), the continuity equation
(Eq. 1.16), the equation of state (Eq. 1.17), and the energy equation (Eq. 1.19).
However, they do not move according to Eq. 1.18. They remain fixed in position (fixed
boundaries) or move according to some externally imposed function (moving objects
like gates, wavemakers …).
Boundary particles are organized in a staggered manner (see Fig. 2.4):

28

Figure 2.4: 2D sketch of the interaction between a fluid particle (empty circle) and a set
of boundary particles (full circles). The boundary particles are placed in a staggered
manner.

When a fluid particle approaches a boundary the density of the boundary particles
increases according to Eq. 1.16 resulting in a pressure increase following Eq. 1.17.

Thus, the force exerted on the fluid particle increases due to the pressure term ()2ρP
in momentum equation (see Eq. 1.8, 1.13 or 1.15). This mechanism is depicted in a
simple example where a fluid particle approaches the bottom of the tank. When the
distance between the boundary particle and the fluid particle becomes smaller than 2h,
the density, pressure and force exerted on the incoming particle increase generating the
repulsion mechanism (see Fig. 2.5). The normalized pressure

term, () ()Rzz PPNPT 22 / ρρ= , is represented in Fig. 5c, where z refers to the distance
from the incoming fluid particle to the wall and R the minimum distance to the wall
attained by the incoming particle. The wall is composed of boundary particles.

0.8 1 1.2 1.4 1.6 1.8 2
1000

1100

1200

1300

Position/h

D
en

si
ty

 (
kg

/m
3)

0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4
x 10

4

Position/h

P
re

ss
u

re
 (

N
/m

2
)

0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

Position/h

N
P

T
z

Figure 2.5: Variation of density (a), pressure (b) and normalized pressure term (c) for a
moving particle approaching a solid boundary. Calculations were run without viscosity.

29

2.4.2. Repulsive boundary conditions.

This boundary condition was developed by Monaghan (1994) to ensure that a water
particle can never cross a solid boundary. In this case, analogous to inter-molecular
forces, the particles that constitute the boundary exert central forces on the fluid
particles. Thus, for a boundary particle and a fluid particle separated a distance r the
force for unit of mass has the form given by the Lennard-Jones potential. In a similar
way, other authors (Peskin, 1977) express this force assuming the existence of forces in
the boundaries, which can be described by a delta function. This method was refined in
Monaghan and Kos (1999) by means of an interpolation process, minimizing the inter-
spacing effect of the boundary particles on the repulsion force of the wall.

Following this approach, the force experienced by a water particle,f
r

, acting normal to
the wall, is given by (Rogers & Dalrymple 2008)

()⊥= uzPRnf ,)()(εξψrr

 (2.12)

where n
r
 is the normal of the solid wall. The distance ψ is the perpendicular distance of

the particle from the wall, while ξ is the projection of interpolation location ξ i onto the

chord joining the two adjacent boundary particles and ⊥u is the velocity of the water
particle projected onto the normal.. The repulsion function, R(ψ), is evaluated in terms

of the normalized distance from the wall, hq 2ψ= , as

()q
q

AR −= 1
1

)(ψ (2.13)

where the coefficient A is

201.0
1

ic
h

A = (2.14)

ci being the speed of sound corresponding to particle i.

The function P(ξ) is chosen so that a water particle experiences a constant repulsive
force as it travels parallel to the wall

()

∆
+=

b
P

πξξ 2
cos1

2

1
 (2.15)

where ∆b is the distance between any two adjacent boundary particles. Finally, the

function ()⊥uz,ε is a modification to Monaghan and Kos’s original suggestion and
adjusts the magnitude of the force according to the local water depth and velocity of the
water particle normal to the boundary

() () ()⊥⊥ += uzuz εεε , (2.16)

where

()
1

0

0

1

02.0

02.0

>
−≥>

≥

+=

o

oo

hz

hz

z

hzzε (2.17)

and

30

()

>
<

>
=

⊥

⊥

⊥

⊥⊥

o

oo

cu

cu

u

cuu

20

20

0

1

20

0

ε (2.18)

In Equations 2.12-2.14, z is the elevation above the local still-water level ho,
() nvvu BPWP

rrr ⋅−=⊥ , where the subscripts WP and BP refer to water and boundary

particles respectively, and oo Bc ργ= the speed of sound at the reference density.
The system of normals requires each boundary particle (BP) to know the coordinates of
its adjacent BPs. In a two-dimensional situation as shown in Figure 2.6a, the boundary
particle i is surrounded by BPs i-1 and i+1 so that the tangential vector is given by

() 1111 / −+−+ −−= iiii rrrrt rrrrr

 so that the normal is then found from 0=tn
rr

. The three-
dimensional situation is shown in Figure 2.6b where BP i also has adjacent neighbors j-
1 and j+1. The coordinates of these adjacent BPs are required to calculate the tangents

and normal: () 1111 / −+−+ −−= iiii rrrrt rrrrr

, () 1111 / −+−+ −−= jjjj rrrrs rrrrr
 and stn rrr ×= .

i
i+ 1

i−1

 i−1

 i+1

 j−1

 j+1

 i

Figure 2.6: Location of adjacent boundary particles. (a) 2-D boundary particles and
adjacent neighbors; (b) 3-D boundary particles and adjacent neighbors

2.4.3 Periodic Open Boundary Conditions

In the present release version of the code, open boundaries are implemented using
periodic boundary conditions. Essentially this means that particles near an open lateral
boundary interact with the particles near the complementary open lateral boundary on
the other side of the domain. This situation is shown in Figure 2.7 where water particle
i lies near the top boundary and therefore its area of influence (or kernel support)
extends beyond the lateral boundary. With periodic boundaries, this area of influence is
continued through the bottom boundary so that particles interact near the bottom
boundary within the extended support interact with particle i.

31

Missing kernel support
for fluid particle i

Periodic kernel support
for fluid particle i

 i

Periodic lateral
boundary

Periodic lateral
boundary

Figure 2.7: Periodic lateral boundaries: area of influence (kernel support) for particle i
extend beyond top lateral boundary and is continued through periodic bottom boundary.

2.4.4. Floating Objects.

In SPHysics and SPH in general, the boundary is described by a set of discrete
boundary particles which exert a repulsive force on water particles when they approach.
There are several methods used to try and achieve the repulsion expected including
ghost particles, stationary water particles and repulsive forces. In the SPHysics code,
we have two types of boundary implemented: stationary water particles (referred to as
dynamic boundary particles, Crespo et al. 2008) and repulsive wall particles which
exert a force on approaching water particles with a singularity in the force field as the
interparticle distance approaches zero (Monaghan and Kos, 1999; Rogers and
Dalrymple, 2008). By summing the contributions exerted on the boundary particles for
an entire body, the motion of a floating object can be evaluated and the object moved
accordingly. Techniques such as the ghost particles method become very difficult and
particularly unwieldy when there are corners or curved surfaces since when generating
the ghost particles it is difficult to generate the correct force.

32

We assume that the objects are treated as rigid bodies. The force on each boundary
particle is computed by summing up the contribution from all the surrounding water
particles within the surrounding kernel. Hence, boundary particle k experiences a force
per unit mass given by

∑
∈

=
WPsa

kak ff (2.19)

where WPs denotes water particles and kaf is the force per unit mass exerted by water

particle a on boundary particle k. By the principle of equal and opposite action and
reaction, the force exerted by a water particle on each boundary particle is given by

akakak mm ff −= (2.20)

This is useful since during the simulation we only actually compute repulsive force, akf ,

exerted by the boundary particle k on water particle a. However, using relation (2.20),
we can estimate the force exerted on the moving body.
For the motion of the moving body, we use the equations of basic rigid body dynamics.
The equations of motion of the body in the translational and rotational degrees of
freedom are given by

∑
∈

=
BPsk

kkm
t

M f
V

d

d
 and ()∑

∈

×−=
BPsk

kkkm
t

I fRr
Ω

0d

d
 (2.21)

where M is the mass of the object, I is the moment of inertia, V is the velocity of the
object, Ω is the rotational velocity of the object, R0 is the position of the centre of mass
and BPs denotes boundary particles. Equations (2.21) are integrated in time to predict
the values of V and Ω for the beginning of the next time-step. Each boundary particle
that describes the moving body has a velocity given by

()0RrΩVu −×+= kk (2.22)

The boundary particles within the rigid body are then moved by integrating equation
(2.22) in time. It can be shown that this technique conserves both linear and angular
momenta (Monaghan et al., 2003; Monaghan, 2005).

2.5. Checking limits

In SPH, fluid particles can leave the computational domain in different ways, both
physically and non-physically. Once the particle is outside the domain, it is
continuously accelerated under the effect of gravity. These particles must be identified
and removed from the run to avoid spurious effects. The treatment of these particles
depends on the way they leave the computational domain.

2.5.1. Fixing the limits

Limits of the computational domain are fixed at the beginning of the run depending on

the initial position of the particles. In each direction: htikk +=Λ=Λ))0,(max(max

33

and htikk −=Λ=Λ))0,(min(min
, where Λk refers to the direction (X, Y or Z) and

],1[Ni ∈ refers to all particles. These limits fix the number of cells of dimensions
2h×2h×2h (in 3D) used to cover the computational domain.
Limits in X, Y and Z- directions remain unchanged during the run. The limit in Z+ is
allowed to vary in time, since fluid can splash and surpass the upper limit of the
container. All limits are checked at every time step.

2.5.2. Changing the limits in Z+

When a fluid particle surpasses the upper limit in the vertical Z direction, the
computational domain is extended and new cells are created (see Fig. 2.8). The number
of boundary particles inside these new cells is immediately set to zero. Fluid particles
can then occupy these cells depending on their position. The number of cells in the
vertical is thus dynamically modified depending on the position of the highest fluid
particle. Furthermore, the number of boxes decreases when the particles fall down (last
frame of Fig. 2.8). This generates important savings in execution time, since no
redundant cell computations are performed.

Figure 2.8: Evolution of new cells in Z direction depending on the fluid particles
movement.

When a part of a moving object surpasses the initial upper limit that part of the object it
is stopped at that upper limit for the rest of the run.

2.5.3. Limits in X, Y or Z- directions

A fluid particle can surpass the initial limits in X, Y or Z- direction due to several
reasons. Dynamic boundary particles are not completely impermeable. Hence a single
particle, accelerated by collision in the proximity of a boundary, can possibly penetrate
the boundary. On the other hand, the fluid can collide with the container overtopping
the lateral walls. Once the fluid leaves the container, fluid particles are continuously
accelerated by gravity away from the domain of interest, giving rise to very small time
steps according to Eq. 3.7 slowing down the calculations.

The position of particles is checked every time step, in such a way that when a particle
is found outside the container, the particle is replaced at a previously defined position
outside the container and marked with a flag. Thus, although the particle is not
eliminated from the list (the number of particles, N, remains constant) the particle is not
allowed to move with time.

34

2.6. Restart runs & checkpointing (repetitive restarts)

Restarting previous (unfinished) runs is controlled using the RESTART parameter. If
the code is being run on computer clusters, there are sometimes limits as to how long a
particular job can run, e.g. 24 hours. If the code is to run for more than 24 hours, then
the code needs to be restarted repetitively, a process known as checkpointing. This can
be specified when first launching the SPHysics code by setting the i_restartRun
parameter in the Case files.

i_restartRun > 1 is used for Checkpointing = repetitive restarting of code (for
clusters)

so that:
i_restartRun = 0 : Start new run, once only
i_restartRun = 1 : reStart old run, once only
i_restartRun = 2 : Start new run, with repetitive restarts (Checkpointing)
i_restartRun = 3 : reStart old run, with repetitive restarts (Checkpointing)

(Note: this parameter has been changed from v1.4 to v2.0.)

35

3. USER’S MANUAL

3.1. Installation
Two versions of SPHysics are available in this release:

- SPHysics_2D. The computational domain is considered to be 2D, where x
corresponds to the horizontal direction and z to the vertical direction.

- SPHysics_3D. The computational domain is fully 3D. x and y are the horizontal
directions and z the vertical direction.

SPHysics is distributed in a compressed file (gz or zip). The directory tree shown in
Figure 3.1 can be observed after uncompressing the package
In that figure, the following directories can be observed both in 2D and in 3D.

source contains the FORTRAN codes. This directory contains two subdirectories:
SPHysicsgen: contains the FORTRAN codes to create the initial conditions of
the run.
SPHysics: contains the FORTRAN source codes of SPH.

execs contains all executable codes.
run_directory is the directory created to run the model. The different subdirectories
Case1, …, CaseN placed in this directory correspond to the different working cases
to be created by the user. Input and output files are written in these directories
Post-Processing this directory contains codes to visualize results.

3.2. Program Outline

Both the 2D and 3D version consist in two programs, which are run separately and in
the following order.
2D Code:

SPHysicsgen_2D: Creates the initial conditions and files for a given case.
SPHysics_2D: Runs the selected case with the initial conditions created by
SPHysicsgen_2D code.

3D Code:
SPHysicsgen_3D: Creates the initial conditions and files for a given case.
SPHysics_3D: Runs the selected case with the initial conditions created by
SPHysicsgen_3D code.

In general, 2D or 3D appended to the source file name means that the source is suited
for 2D or 3D calculations.

In the remainder of this document, SPHysicsgen and SPHysics, when used, refer to both
the aforementioned 2D and 3D programs for convenience. For example, SPHysicsgen
will refer to both SPHysicsgen_2D and SPHysicsgen_3D.

36

Figure 3.1. Directory tree.

37

3.2.1. SPHYSICSGEN
All subroutines are included in two source files (SPHysicsgen_2D.f or
SPHysicsgen_3D.f), depending on the nature two or three- dimensional of the
calculation. Each source uses a different common file, where most of the variables are
stored. The common files are common.gen2D (in 2D) and common.gen3D (in 3D).
Both versions (2D and 3D) can be compiled by the user with any FORTRAN compiler
and the resulting executable file is placed in subdirectory \execs.

SPHysicsgen plays a dual role: (i) Creating the MAKEFILE to compile SPHysics; and
(ii) Creating the output files that will be the input files to be read by SPHysics. These
files contain information about the geometry of the domain, the distribution of particles
and the different running options.

In Windows for example, SPHysicsgen.exe can be executed using one of the following
two commands,
 1. SPHysicsgen.exe <input_file >output_file
input_file is the general name (any name can be used) of the file containing the running
options. Different examples of input_file will be shown in next section.
output_file is the general name (any name can be used) of the file containing general
information about the run. This file is never read by the rest of the code and only serves
to provide information to the user.
 2. SPHysicsgen.exe
In this case, data about the run must then be provided by the user by means of the
keyboard and the information about the run appears on the screen. This option can be
used by beginners to get familiarized with the different options.

3.2.1.1. Creating compiling options
The compilation of SPHysics code depends on the nature of the problem under
consideration and on the particular features of the run. Thus, the user can chose the
options that are better suited to any particular problem and only those options will be
included in the executable versions of SPHysics. This protocol speeds up calculations
since the model is not forced to make time consuming logical decisions.

Both in 2D and 3D the following compiling options can be considered:

i) Kind of kernel: (1=Gaussian; 2=Quadratic; 3=Cubic Spline; 5=Quintic).
ii) Time stepping: (1=Predictor-Corrector;2=Verlet; 3=Symplectic; 4=Beeman).
iii) Density filter: (0=no filter; 1=Shepard; 2=MLS).
iv) Kernel correction: (0=none; 1=Kernel correction; 2=Gradient kernel

Correction).
v) Viscosity treatment: (1=Artificial viscosity; 2=Laminar viscosity;

3=Laminar viscosity +SPS).
vi) Equation of state: (1=Weakly Compressible Fluid (Tait equation); 2=Ideal

Gas Equation; 3=Incompressible Fluid (Poisson equation)).

38

vii) Boundary conditions: (1=Repulsive BC; 2=Dynamic BC).
viii) Choice of compilers: (1=gfortran; 2=ifort; 3=CVF; 4=Silverfrost FTN95).

Please refer to section 4.1.1 for details on running the code on Windows
using Compaq Visual Fortran, and section 4.1.2 to use gfortran and ifort
compilers. The gfortran and ifort compilers have only been tested on Linux
and Mac OSX platforms.

3.2.1.2. Input files
Different examples of input files (referred to herein as Case files, e.g. Case1.txt) will be
shown in next section, where several test cases will be described.

3.2.1.3. Output files
As we mentioned above, different output files are created by SPHYSICSgen. These files
can be used either by the SPHysics executable as input files or by MATLAB codes to
visualize results (different MATLAB codes are provided in /Post-processing
subdirectory.

SPHysics.mak
Compiling file created by the executable SPHYSICSgen. It depends on the running
options defined by input_file. It was prepared for Compaq Visual Fortran, Silverfrost
FTN95, ifort and gfortran although it can be adapted to other compilers.

INDAT
Created by SPHysicsgen
Read by SPHysics code at GETDATA (see subsection 3.2.2.3).
UNIT=11
The file contains the following variables:
i_kernel vlz
i_algorithm dx
i_densityFilter dy
i_viscos dz
iBC h
i_periodicOBs(1) np
i_periodicOBs(2) nb
i_periodicOBs(3) nbf
lattice ivar_dt
i_EoS dt
h_SWL tmax
B out
gamma trec_ini
coef dtrec_det
eps t_sta_det
rho0 t_end_det
viscos_val i_restartRun
visc_wall CFL_number
vlx TE0
vly

39

 i_kernelcorrection i_vort
 iRiemannSolver ndt_VerletPerform
iTVD ndt_FilterPerform
beta_lim ndt_DBCPerform

Description:

i_kernel: Kind of kernel (1=Gaussian; 2= Quadratic; 3= Cubic Spline; 5= Quintic).
i_algorithm: Kind of algorithm (1= Predictor1 Corrector algorithm; 2= Verlet

algorithm; 3=Symplectic; 4=Beeman algorithm).
i_densityFilter: Use of a density filter: (0= no filter; 1=Shepard; 2=MLS).
i_viscos: Viscosity definition 1= Artificial; 2= Laminar; 3= Laminar + SPS
IBC: Boundary conditions. 1=Monaghan repulsive forces; 2= Dynamic boundaries.
i_periodicOBs(1): Periodic Lateral boundaries in x direction? (1=yes)
i_periodicOBs(2): Periodic Lateral boundaries in y direction? (1=yes)
i_periodicOBs(3): Periodic Lateral boundaries in z direction? (1=yes)
lattice: Lattice: (1) SC; (2) BCC
i_EoS: Equation of State: (1) Tait equation; (2) Ideal Gas; (3) Poisson equation
h_SWL: Still water level (m).
B: Parameter in Equation of State (Monaghan and Koss, 1999).
gamma: Parameter in Equation of State (Monaghan and Koss, 1999) (Default value 7).
Coef: Coeffficient to calculate the smoothing length (h) in terms of dx,dy,dz;

h=coefficient*sqrt(dx*dx+dy*dy+dz*dz)
eps: Epsilon parameter in XSPH approach (Default value 0.5).
rho0: Reference density (Default value 1000 kg/m3).
viscos_val: Viscosity parameter, it corresponds to α (Monaghan and Koss, 1999) if

i_viscos = 1 and to ν (kinematical viscosity) if i_viscos = 2 or 3.
visc_wall: Wall viscosity value for Repulsive Force BC
vlx, vly, vlz: medium extent in X, Y, Z direction.
dx, dy, dz: Initial interparticle spacing in x, y, z direction.
h: Smoothing length.
np: Total number of particles.
nb: Number of boundary particles.
nbf: Number of fixed boundary particles. Note that boundary particles can be fixed or

move according to some external dependence (e.g. gates, wavemakers).
ivar_dt: Variable time step calculated when ivar_dt=1.
dt: Initial time step. It is kept throughout the run when ivar_dt=0.
tmax: RUN duration (in seconds)
out: Recording time step (in seconds). The position, velocity, density, pressure and mass

of every particle is recorded in PART file every out seconds.
trec_ini: Initial recording time.
dtrec_det: Detailed recording step.
t_sta_det: Start time in detailed recording.
t_end_det: End Time in detailed recording.

40

i_restartRun: (0) Start a new RUN; (1) Restart an old RUN; (2) New with CheckPointg;
(3) Restart with CheckPointing

CFL_number: Constant to calculate the time step following CFL condition (0.1, 0.5).
TE0: Initial value for the thermal energy simulating an Ideal Gas
i_kernelcorrection: Kernel correction: (0=none; 1=Kernel correction; 2=Gradient kernel

Correction).
 iRiemannSolver: Use of Riemann Solver: (0=None, 1=Conservative,

2=NonConservative
iTVD: Use TVD, slope limiter (beta_lim)? (1=yes)
beta_lim: slope limiter using Riemann Solver
i_vort: vorticity printing ? (1=yes)
ndt_VerletPerform: Number of time steps to apply the Eulerian equations with the

Verlet algorithm
ndt_FilterPerform: Number of time steps to apply the density filter
ndt_DBCPerform: Number of time steps to apply the Hughes and Graham (2010)

correction for dynamic boundary conditions.

IPART
Created by SPHysicsgen.
Read by SPHysics code at GETDATA (see subsection 3.2.2.3).
UNIT=13
The file contains the following variables recorded at time=0:
In 2D version

xp(1) zp(1) up(1) wp(1) rhop(1) p(1) pm(1)
xp(2) zp(2) up(2) wp(2) rhop(2) p(2) pm(2)

……….
xp(np) zp(np) up(np) wp(np) rhop(np) p(np) pm(np)

In 3D version

xp(1) yp(1) zp(1) up(1) vp(1) wp(1) rhop(1) p(1) pm(1)
xp(2) yp(2) zp(2) up(2) vp(2) wp(2) rhop(2) p(2) pm(2)

……………… ………………..
xp(np) yp(np) zp(np) up(np) vp(np) wp(np) rhop(np) p(np) pm(np)

Description:
xp(i) Position in x direction of particle i.
yp(i) Position in y direction of particle i.
zp(i) Position in z direction of particle i.
up(i) Velocity in x direction of particle i.
vp(i) Velocity in y direction of particle i.
wp(i) Velocity in z direction of particle i.
rhop(i) Density of particle i.
p(i) Pressure at particle i.
pm(i) Mass of particle i.

41

MATLABIN
Created by SPHysicsgen.
To be used by MATLAB codes for graphical representation.
UNIT=8
The file contains the following variables:
np
vlx
vly
vlz
out
nb
nbf

Description:
vlx medium extent in x direction.
vly medium extent in y direction. It is set to zero when IDIM= 2.
vlz medium extent in z direction.
The rest of the variables were previously described.

NORMALS
Created by SPHysicsgen.
To be used by SPHysics code when IBC=1. It contents the normal and tangent vectors
to each boundary particle plus the neighbours of each boundary particle.
UNIT=21

The file contains the following variables:
In 2D version
xnb(i),znb(i),
iBP_Pointer_Info(i,1), iBP_Pointer_Info(i,2), iBP_Pointer_Info(i,3),iBP_Pointer_Info(i,4),
BP_xz_Data(i,1), BP_xz_Data(i,2)

In 3D version
xnb(i),ynb(i),znb(i),xtb(i),ytb(i),ztb(i),xsb(i),ysb(i),zsb(i),
iBP_Pointer_Info(i,1), iBP_Pointer_Info(i,2), iBP_Pointer_Info(i,3),
iBP_Pointer_Info(i,4), iBP_Pointer_Info(i,5), iBP_Pointer_Info(i,6),
BP_xyz_Data(i,1), BP_xyz_Data(i,2), BP_xyz_Data(i,3)

Description:
xnb(i),ynb(i),znb(i): Components of the unitary vector normal to the boundary at point i.
xtb(i),ytb(i),ztb(i): Components of the unitary vector tangential to the boundary at that

point.
xsb(i), ysb(i), zsb(i) Components of the unitary vector tangential to the boundary at

point i and perpendicular to the previous one.
iBP_Pointer_Info(i,1): Absolute index BP

42

iBP_Pointer_Info(i,2): Rank of BP (default=0, reserved for MPI)
iBP_Pointer_Info(i,3): Absolute index of i-1 neighbour BP
iBP_Pointer_Info(i,4): Absolute index of i+1 neighbour BP
iBP_Pointer_Info(i,5): Absolute index of j-1 neighbour BP
iBP_Pointer_Info(i,6): Absolute index of j+1 neighbour BP
BP_xyz_Data(i,1), BP_xyz_Data(i,2), BP_xyz_Data(i,3): xp(BP), yp(BP), zp(BP)
needed for the future release of a MPI version of the code.

OBSTACLE
Created by SPHysicsgen
To be used by MATLAB codes for graphical representation
UNIT=55
The file contains the following variables:
iopt_obst
XXmin
XXmax
YYmin
YYmax
ZZinf
ZZmax
slope
iopt_obst
XXmin
XXmax
YYmin
YYmax
ZZinf
ZZmax
slope
………
iopt_obst

Description:
iopt_obst Conditional variable (1= obstacle exists; 0= it does not exist). The last one is

always zero.
XXmin Minimum value of the obstacle in x direction.
XXmax Minimum value of the obstacle in x direction.
YYmin Minimum value of the obstacle in y direction.
YYmax Minimum value of the obstacle in y direction.
ZZmin Minimum value of the obstacle in z direction.
ZZmax Minimum value of the obstacle in z direction.
Slope Obstacle slope in x direction.

43

WAVEMAKER
Created by SPHysicsgen
To be used by SPHysics code. Parameters fix the wavemaker extent and movement. It
will only move in x direction.
UNIT=66
The file contains the following variables:
iopt_wavemaker
i_paddleType
nwavemaker_ini
nwavemaker_end
X_PaddleCentre
X_PaddleStart
paddle_SWL
flap_length
stroke
twavemaker
Nfreq
A_wavemaker(n)
Period(n)
phase(n)
twinitial(n)

Description:
iopt_wavemaker: Conditional variable (1= Wavemaker exists; 0= it does nor exist).
i_paddleType: Enter Paddle-Type (1: Piston, 2: Piston-flap)
nwavemaker_ini: First wavemaker particle.
nwavemaker_end: Last wavemaker particle.
X_PaddleCentre: Wavemaker Centre position in X coordinates
X_PaddleStart: X_PaddleStart = 0.5*stroke
paddle_SWL: Enter paddle Still Water Level (SWL)
flap_length: Enter piston-flap flap_length
stroke: Wavemaker Stroke = 2*Amplitude
twavemaker: Initial time of wavemaker
Nfreq: Number of frequencies
A_wavemaker:Amplitude of wavemaker movement.
Period: Period of wavemaker movement.
phase(n): Phase of wavemaker movement.
twinitial(n): Start of wavemaker movement (seconds).

44

GATE
Created by SPHysicsgen
To be used by SPHysics code. Parameters fix the gate extent and movement.
UNIT=77
The file contains the following variables:
iopt_gate
ngate_ini
ngate_end
VXgate,VYgate,VZgate
tgate

Description:
iopt_gate Conditional variable (1= gate exists; 0= it does nor exist).
ngate_ini First gate particle
ngate_end Last gate particle
VXgate,VYgate,VZgate Gate velocity in coordinates
tgate Start of gate movement (seconds).

Tsunami_Landslide.txt
Created by SPHysicsgen
To be used by SPHysics code. Parameters fix the wedge dimensions and movement.
UNIT=88
The file contains the following variables:
iopt_RaichlenWedge
bslope

Floating_Bodies.txt
Created by SPHysicsgen
To be used by SPHysics code. Parameters fix the floating bodies dimensions and
movement.
UNIT=99
The file contains the following variables:
iopt_FloatingBodies
nbfm
num_FB
bigMass(num_FB)
bigInertiaXX(num_FB), bigInertiaYY(num_FB),bigInertiaZZ(num_FB)
XcylinderDimension(num_FB),YcylinderDimension(num_FB), ZcylinderDimension(num_FB)
cylinderDensity(num_FB)
FB_SpecificWeight(num_FB)
friction_coeff(num_FB)
Box_XC(num_FB),Box_YC(num_FB),Box_ZC(num_FB)
bigU(num_FB),bigV(num_FB),bigW(num_FB),
bigOmegaX(num_FB),bigOmegaY(num_FB),bigOmegaZ(num_FB)
nb_FB(num_FB)

45

3.2.1.4. Subroutines
All subroutines in SPHysicsgen are inside a single source file SPHysicsgen_2D.f or
SPHysicsgen_3D.f

SPHysicsgen Main program.
Depending on the subroutine, different container geometries can be used.
BOX Subroutine to build a box in 2D or 3D.
BEACH Subroutine to build a beach in 2D or 3D. The beach consists in a flat area

followed by a tilted region. The tilted area always has a slope in x- direction and a
possible slope in y- direction.

Each subroutine calls new subroutines to generate the walls of the container and the
different obstacles placed inside it.
BOUNDARIES_LEFT Subroutine to generate the left boundary of the container both in

2D and 3D.
BOUNDARIES_RIGHT Subroutine to generate the right boundary of the container

both in 2D and 3D.
BOUNDARIES_BOTTOM Subroutine to generate the bottom boundary of the

container both in 2D and 3D.
BOUNDARIES_FRONT Subroutine to generate the front of the container in 3D.
BOUNDARIES_BACK Subroutine to generate the back of the container in 3D.
WALL Subroutine to generate a wall with an arbitrary slope in x- direction inside the

container.
WALL_HOLE Subroutine to generate a wall with a round shaped hole inside the

container (Only in 3D version).
WALL_SLOT Subroutine to generate a wall with a slot inside the container (Only in

3D version).
OBSTACLE Subroutine to generate an obstacle inside the container.
WAVEMAKER Subroutine to generate a piston that can move in x- direction.
GATE Subroutine to generate a gate that can move in any direction.
TRAPEZOID Subroutine to generate a trapezoid inside the container.
RAICHLENWEDGE_PARTICLES Subroutine to generate a sliding wedge inside the

beach.
FLOATINGBODY_PARTICLES Subroutine to generate floating bodies inside the

container.
EXTERNAL_GEOMETRY This subroutine, which only works in 2D, reads the

container and the initial fluid distribution from a file previously generated. The
MATLAB software to generate the pre-processing will be provided in next
release.

Apart from previous subroutines, which control the shape and dimensions of the
container, other subroutines are responsible of the fluid properties inside that container.

46

FLUID_PARTICLES Subroutine to choose between different initial distributions of the
fluid.

DROP Subroutine used to generate a round shaped area (2D or 3D) as initial position.
The velocity of the particles inside the region can be fixed by the user (all
particles share the same velocity).

SET Subroutine used to generate a set of particle as initial condition. The number of
particle and the initial position and velocity of each particle can be decided by the
user. This configuration is particularly useful when checking changes in the code
since it permit runs with a small number of moving particles.

FILL PART Subroutine used to generate a cubic area as initial position (2D or 3D).
Different cubes can placed at different position inside the computational domain.

WAVE Subroutine used to generate a wave (2D or 3D) advancing in x- direction as
initial position.

POS_VELOC Subroutine used to determine the initial position and velocity of particles.
PRESSURE Subroutine used to determine the initial pressure of particles.
P_BOUNDARIES Subroutine to assign density equal to the reference density to the

boundary particles and gage pressure equal to zero.
CORRECT_P_BOUNDARIES Subroutine to correct pressure at boundaries. It

considers the density to be equal to the reference density plus a hydrostatic
correction. Pressure is then calculated according to Batchelor equation.

PERIODICITYCHECK Subroutine to determine the limits in periodic boundary
conditions. These BC are only available in 3D and in y- direction.

NORMALS_CALC_2D and NORMALS_CALC_3D Subroutines to calculate the
normals to be used in repulsive boundary conditions.

NORMALS_FILEWRITE_2D and NORMALS_FILEWRITE_3D Subroutines to write
the normals to be used in repulsive boundary conditions.

POSITION_CHECK Subroutine to ensure that particles are not too close to each other.
PRECISIONWRITE Subroutine to choose precision of SPHYSICS variables of position
TOCOMPILE_IFORT Subroutine to create the MAKEFILE, SPHysics.mak, used to

compile SPHysics using a IFORT compiler. The source files to be included in
SPHysics.mak depend on the particular conditions of the run fixed by the input
files.

TOCOMPILE_GFORTRAN Subroutine to create the MAKEFILE, SPHysics.mak,
used to compile SPHysics using a GFORTRAN compiler. The source files to be
included in the MAKEFILE depend on the particular conditions of the run fixed
by the input files.

TOCOMPILE_CVF Subroutine to create the MAKEFILE necessary to compile
SPHysics using a Compaq Visual Fortran compiler. The source files to be
included in the MAKEFILE depend on the particular conditions of the run fixed
by the input files.

TOCOMPILE_FTN95 Subroutine to create the MAKEFILE necessary to compile
SPHysics using a Silverfrost FTN95 compiler. The source files to be included in
the MAKEFILE depend on the particular conditions of the run fixed by the input
files.

47

3.2.2. SPHYSICS
SPHysics nature depends on the compiling option determined by SPHysicsgen

3.2.2.1. Input files
The input files correspond to the output files generated by SPHysicsgen and described
in section 3.2.1.3.

3.2.2.2. Output files

PART_klmn
Created by SPHysics at POUTE_3D.f or POUTE_2D.f with a periodicity in seconds
fixed by the input_file used to run SPHysicsgen.
UNIT=23
The structure of PART_klmn is the same as that of IPART previously described. The
indices k, m, n and l can take any integer value from 0 to 9, in such a way that the
maximum number of images is 9999.
Each PART_klmn file is opened, recorded and closed in each call to POUTE_3D.f or
POUTE_2D.f subroutines, so, a single UNIT=23 is assigned to all PART_klmn files.

VORT_klmn
Created by SPHysics at POUTE_3D.f or POUTE_2D.f with the same periodicity as
PART_klmn.
UNIT=24
The following variables are recorded:
vortx_temp vorty_temp vortz_temp

(Note this is new for v2.0)
Description:
vortx_temp, vorty_temp, vortz_temp: correspond to vorticity in x,y and z constant

planes

DT
Created by SPHysics at POUTE_3D.f or POUTE_2D.f
UNIT=19
The following variables are recorded:
time dt1 dt2 dtnew

Description:
time: Time instant (in seconds)
dt1: Time step based on the force per unit mass (see section 2.2).
dt2: Time step combining the Courant and the viscous conditions (see section 2.2).
dtnew: Time step corresponding to next step using dt1 and dt2.

48

DETPART_klmn
Created by SPHysics at POUTE_3D.f or POUTE_2D.f
UNIT=53
The same as PART_klmn but with a shorter periodicity during a certain interval of the
run. Details about periodicity, starting and end of this recording can be seen in section
4.

ENERGY
Created by SPHysics at ENERGY_2D.f or ENERGY_3D.f.
UNIT=50
The file contains the following variables recorded with the same periodicity as
PART_kmnl.

time Eki_p Epo_p TE_p Eki_b Epo_b TE_b

Description:
time Time instant (in seconds)
Eki_p Kinetical energy summation (for fluid particles)
Epo_p Potential energy summation (for fluid particles)
TE_p Thermal energy summation (for fluid particles)
Eki_b Kinetical energy summation (for boundary particles)
Epo_b Potential energy summation (for boundary particles)
TE_b Thermal energy summation (for boundary particles)

NOTE: Boundary particle energies only make sense when using Dynamic Boundary
Conditions.

RESTART
Created by SPHysics at SPHYSICS_3D.f or SPHYSICS_2D.f
UNIT=44
The following variables are recorded:
itime time ngrab dt

Description:
itime: Number of iterations since the beginning of the run.
time: Time instant (in seconds).
ngrab: Recording instant.
dt: Time step

49

3.2.2.3. Subroutines
All subroutines in SPHysicsgen are placed in the same source file, however SPHysics
ones are placed in different source files. A short description of each possible subroutine
follows.

SPHysics (Source file: SPHYSIC_2D.f or SPHYSIC_3D.f). Main program containing

the main loop.
GETDATA (Source file: GETDATA_2D.f or GETDATA_3D.f). Subroutine called

from SPHysics at the beginning of the run. It provides data about the run (scales,
kernel parameters, steps, use of gates and/or wavemakers…).

ENERGY (Source file: ENERGY_2D.f or ENERGY_2D.f). Subroutine called from
SPH to record information about energy (kinematical, potential and thermal). This
subroutine is called at the beginning and end of the run and also every out seconds
(variable provided by INDAT file). It creates the file ENERGY described in
previous section.

INI_DIVIDE (Source file: INI_DIVIDE.f). Subroutine called from SPH at the
beginning of the run (just for fixed boundary particles) and from subroutine STEP
during the run (every time step for moving objects and fluid particles). It
initializes the link list.

DIVIDE (Source file: DIVIDE_2D.f and DIVIDE_3D.f). Subroutine called from
SPHysics at the beginning of the run and from subroutine STEP during the run
(every time step). The first time (when called from SPHysics) creates the link list
corresponding to the fixed boundary particles. The rest of the calls the subroutine
allocates the fluid particles and the moving boundary particles into the link list.

KEEP_LIST (Source file: KEEP_LIST.f). Subroutine called from SPHysics at the
beginning of the run just after calling DIVIDE. It keeps the list of fixed boundary
particles, which is never recalculated again.

CHECK_LIMITS (Source files: CHECK_LIMITS_2D.f and CHECK_LIMITS_3D.f).
Subroutine called from SPHysics every time step. The subroutines detect the
position of particles outside the computational domain and relocate them (see
section 2.5).

POUTE (Source files: POUTE_2D.f, POUTE_3D.f, POUTE_CONSERVATIVE_2D.f
and POUTE_CONSERVATIVE_3D.f). Subroutine called from SPHysics to
record information about particles (position, velocity, density, pressure and mass).
This subroutine is called at the beginning and end of the run and also every out
seconds. It creates the DT, PART and VORT files previously described.

STEP (Source files: STEP_PREDICTOR_CORRECTOR_2D.f,
STEP_PREDICTOR_CORRECTOR_3D.f, STEP_BEEMAN_2D.f,
STEP_BEEMAN_3D.f, STEP_SYMPLECTIC_2D.f,
STEP_SYMPLECTIC_3D.f, STEP_VERLET_2D.f and STEP_VERLET_3D.f).
Subroutine called from SPHysics. It basically manages the marching procedure,
depending on the computational algorithm (Predictor- Corrector, Verlet,
Symplectic or Beeman).

50

CORRECT (Source files: CORRECT_2D.f, CORRECT_3D.f, CORRECT_SPS_2D.f
and CORRECT_SPS_3D.f). This subroutine is called by STEP every time step. It
basically accounts for the body forces and XSPH correction (and SPS terms are
calculated if i_visos = 3).

RECOVER_LIST (Source file: RECOVER_LIST.f). This subroutine is called from
STEP every time step. It recovers the list corresponding to the fixed boundary
particles created by KEEP_LIST.

VARIABLE_TIME_STEP (Source files: VARIABLE_TIME_STEP_2D.f and
VARIABLE_TIME_STEP_3D.f). This subroutine is called from STEP every time
step. It calculates the time step considering maximum inter-particle forces, the
speed of sound and the viscosity.

DENSITYFILTER (SHEPARD) (Source file: DENSITYFILTER_SHEPARD_2D.f and
DENSITYFILTER_SHEPARD_3D.f). Subroutine called from SPHysics every 30
time steps. It uses a Shepard filter when selected in initial conditions.

DENSITYFILTER (MLS) (Source file: DENSITYFILTER_MLS _2D.f and
DENSITYFILTER_MLS _3D.f). Subroutine called from SPHysics every 30 time
steps. It uses a MLS filter when selected in initial conditions.

AC_SHEPARD (Source files: AC_SHEPARD_2D.f and AC_ SHEPARD_3D.f). This
subroutine is called from DENSITYFILTER_MLS. It calls the subroutines
PRE_SELF_SHEPARD and PRE_CELIJ_SHEPARD.

AC_MLS (Source files: AC_MLS_2D.f and AC_MLS_3D.f). This subroutine is called
from DENSITYFILTER_MLS. It calls the subroutines PRE_SELF_MLS and
PRE_CELIJ_MLS.

AC_KC (Source files: AC_KC_2D.f and AC_KC_3D.f). This subroutine is called from
STEP every time step. It calls the subroutines AC.

AC_KGC (Source files: AC_KGC_2D.f and AC_KGC_3D.f). This subroutine is called
from STEP every time step. It calls the subroutines AC, PRE_SELF_KGC and
PRE_CELIJ_KGC.

AC (Source files: AC_2D.f, AC_CONSEVATIVE_2D.f, AC_3D.f and
AC_CONSEVATIVE_3D.f). This subroutine is called from AC_NONE or
AC_KC or AC_KGC every time step. It controls the boundary particles
movement (gates and wavemakers) and calls the subroutines SELF and CELIJ.

PRE_SELF_SHEPARD (Source files: PRE_SELF_SHEPARD_2D.f,
PRE_SELF_SHEPARD_3D.f). This subroutine is called from AC_ SHEPARD.

PRE_CELIJ_SHEPARD (Source files: PRE_CELIJ_SHEPARD_2D.f,
PRE_CELIJ_SHEPARD_3D.f). This subroutine is called from AC_ SHEPARD.

PRE_SELF_MLS (Source files: PRE_SELF_MLS_2D.f, PRE_SELF_MLS_3D.f). This
subroutine is called from AC_MLS.

PRE_CELIJ_MLS (Source files: PRE_CELIJ_MLS_2D.f, PRE_CELIJ_MLS_3D.f).
This subroutine is called from AC_MLS.

PRE_SELF_KGC (Source files: PRE_SELF_KGC_2D.f, PRE_SELF_KGC_3D.f). This
subroutine is called from AC_KGC.

PRE_CELIJ_KGC (Source files: PRE_CELIJ_KGC_2D.f, PRE_CELIJ_KGC_3D.f).
This subroutine is called from AC_KGC.

51

SELF (Source files: all SELF_*.f). This subroutine is called from AC every time step. It

controls the interaction between particles inside the same “cell” determined by
the link list.

CELIJ (Source files: all CELIJ_*.f). This subroutine is called from AC every time step.
It controls the interaction between particles inside adjacent “cells” determined by
the link list.

KERNEL (Source files: KERNEL_GAUSSIAN_2D.f, KERNEL_GAUSSIAN_3D.f,
KERNEL_QUADRATIC_2D.f, KERNEL_QUADRATIC_3D.f,
KERNEL_CUBIC_2D.f, KERNEL_CUBIC_3D.f,
KERNEL_WENDLAND5_2D.f, KERNEL_ WENDLAND5_3D.f). This
subroutine is called from SELF and CELIJ every time step. It calculates the
particle-particle interaction according to kernel definition (1=gaussian,
2=quadratic; 3=cubic; 5=wendland) and dimensionality of the problem (2D or
3D).

VISCOSITY (Source files: VISCOSITY_ARTIFICIAL_2D.f,
VISCOSITY_ARTIFICIAL_3D.f, VISCOSITY_LAMINAR_2D.f,
VISCOSITY_LAMINAR_3D.f, VISCOSITY_LAMINAR+SPS_2D.f and
VISCOSITY_LAMINAR+SPS_3D.for). This subroutine is called from SELF and
CELIJ every time step. It calculates viscosity terms depending on the chosen
option ((1) Artificial (2) Laminar (3) Laminar +SPS) and dimensionality of the
problem (2D or 3D).

MONAGHANBC (Source file: all MONAGHANBC_*.f). This subroutine is called
from CELIJ and SELF (only when considering SELF_BC_MONAGHAN_3D.f
and CELIJ_BC_MONAGHAN_3D.f sources). It accounts for Monaghan’s
repulsive force between fluid and boundary particles.

MOVINGOBJECTS (Source file: MOVINGOBJECTS_2D.f and MOVINGOBJECTS
_3D.f). This subroutine is called from STEP.

MOVINGGATE (Source file: MOVINGGATE_2D.f and MOVINGGATE _3D.f). This
subroutine is called from MOVINGOBJECTS.

MOVINGPADDLE (Source file: MOVINGPADDLE_2D.f and MOVINGPADDLE
_3D.f). This subroutine is called from MOVINGOBJECTS.

MOVINGWEDGE (Source file: MOVINGWEDGE_2D.f and MOVINGWEDGE
_3D.f). This subroutine is called from MOVINGOBJECTS.

RIGID_BODY_MOTION (Source file: RIGID_BODY_MOTION_2D.f,
RIGID_BODY_MOTION_3D.f,
RIGID_BODY_MOTION_CONSERVATIVE_2D.f,
RIGID_BODY_MOTION_CONSERVATIVE_3D.f). It describes the movement
of the floating bodies. This subroutine is called from MOVINGOBJECTS.

LU_DECOMPOSITION (Source files: LU_DECOMPOSITION_2D.f,
LU_DECOMPOSITION_3D.f,). This subroutine is called from
DENSITYFILTER_MLS. It constructs the LU-decomposition matrix.

EOS_IDEALGAS (Source files: EOS_IDEALGAS_2D.f, EOS_IDEALGAS_3D.f,). It
uses the equation of Ideal Gases to solve the pressure.

52

EOS_MORRIS (Source files: EOS_ MORRIS_2D.f, EOS_MORRIS_3D.f,). It uses the
equation of Morris to solve the pressure.

EOS_TAIT (Source files: EOS_TAIT_2D.f, EOS_TAIT_3D.f,). It uses the equation of
Tait to solve the pressure.

VORTICITY (Source files: VORTICITY_2D.f, VORTICITY_3D.f,). It calculates the
vorticity terms. This subroutine is called from CELIJ and SELF.

UPDATENORMALS (Source file: UPDATENORMALS_2D.f and
UPDATENORMALS_3D.f). It calculates the new normals of the moving
boundary particles when Monaghan Boundary conditions are used. This
subroutine is called from MOVINGPADDLE and RIGID_BODY_MOTION.

PERIODICITYCORRECTION (Source file: PERIODICITYCORRECTION_2D.f and
PERIODICITYCORRECTION_3D.f). This subroutine corrects problems when
periodicity domain is higher than dimension extent. It is called from all the
PRE_CELIJ and CELIJ subroutines.

GRADIENTS_CALC (Source files: GRADIENTS_CALC_BASIC_2D.f,
GRADIENTS_CALC_CONSERVATIVE_2D.f,
GRADIENTS_CALC_BASIC_3D.f and
GRADIENTS_CALC_CONSERVATIVE_3D.f). This subroutine is called from
all the SELF and CELIJ subroutines.

APPROX_RIEMANNSOLVER (Source files:
APPROX_RIEMANNSOLVER_CONSERVATIVE_2D.f,
APPROX_RIEMANNSOLVER_NONCONSERVATIVE_2D.f,
APPROX_RIEMANNSOLVER_CONSERVATIVE_3D.f,
APPROX_RIEMANNSOLVER_NONCONSERVATIVE_3D.f,). This subroutine
is called from all the SELF and CELIJ subroutines when Riemann Solver solution
is selected.

LMITER (Source files: LIMITER_BETAMINMOD_2D.f,
LIMITER_BETAMINMOD_3D.f). This subroutine is called from all the
APPROX_RIEMANNSOLVER subroutines when Riemann Solver solution is
selected.

53

4. TEST CASES

4.1. Running the model
Creating and running executable files can be done step by step by the user (compiling
the different source files, putting them in a certain directory and executing the codes
while typing the values of the different variables and options when prompted).
Nevertheless, this process can become tedious, especially when running different
realizations of the same case with small differences in a small number of parameters.
The entire process can be automatically done, although with some differences on
different computer systems. Here we will show two examples for WINDOWS and
LINUX.

NOTE: the default Compiler chosen is CVF, which is option 3 near the end of each
Case file.

4.1.1. Compiling and executing on Linux

SPHysics also currently supports following fortran compilers that have been tested on
Linux platforms,

1. gfortran, a free Fortran 95/2003 compiler that can be downloaded from
http://gcc.gnu.org/wiki/GFortran.

2. The non-commercial Intel ® Fortran Compiler can be downloaded from
http://www.intel.com website.

In order to run SPHysics on Linux, gfortran, ifort and the GNU make utility need to be
installed and available in the default search path (typically /usr/bin or /usr/local/bin).
The f0llowing paragraphs explain the procedure to compile and run the 2D version of
SPHysics. The procedure is exactly the same for the 3D version.

Compiling SPHysicsgen_2D

In the SPHysics_2D/source/SPHysicsgen2D directory there are two Makefiles named
SPHysicsgen_gfortran.mak and SPHysicsgen_ifort.mak. As their names suggest, they
are used to compile SPHysicsgen_2D using the gfortran and ifort compilers
respectively. The gfortran Makefile can be executed using the command 'make -f
Makefile_gfortran.mak'. The Makefile,

1. compiles SPHysicsgen_2D
2. checks for existence of SPHysics_2D/execs and SPHysics_2D/execs.bak

directories. If non-existent these directories are created.
3. moves the previous version of the SPHysicsgen_2D executable, if available, from

the execs directory to execs.bak directory
4. moves the latest compiled version of SPHysicsgen_2D to the execs directory.

54

Running SPHysicsgen_2D and SPHysics_2D

As mentioned before, SPHysicsgen_2D, based on the options chose by the user,
generates the Makefile, SPHysics.mak, to compile the main program SPHysics. The
subroutines tocompile_gfortran and tocompile_ifort, in SPHysicsgen_2D, write out
SPHysics.mak for gfortran and ifort compilers respectively.

There are linux batch files located in the four 2D example directories,
run_directory/CaseN, where N=1,2,3,4. These batch files are named CaseN_linux.bat
(N=1,2,3,4) . Similar linux batch files are located in the 3D example directories.

The following table gives a detailed description of the commands used in the script file
Case1_unix_gfortran.bat which is located in SPHysics_2D/run_directory/Case1. This
batch file can be executed, while in the Case1 directory, by typing
Case1_unix_gfortran.bat at the command prompt.

COMMAND COMMENTS

cd ../../source/SPHYSICSgen2D/

Change to source directory in order to
compile SPHysicsgen using
SPHysicsgen.mak

make -f SPHYSICSgen_gfortran.mak clean Remove any preexisting object files

make -f SPHYSICSgen_gfortran.mak Compile and generate SPHysicsgen_2D
using SPHysicsgen.make. This
Makefile compiles and places the
SPHysicsgen_2D executable in the
execs directory and moves the older
executable to the execs.bak directory.

cd ../../run_directory/Case1 Change to the Case1 example directory.

../../execs/SPHysicsgen_2D < Case1.txt >
Case1.out

Run SPHysicsgen_2D with Case1.txt as
the input file instead of command line
input. The output from the execution is
redirected in Case1.out

cp SPHysics.mak ../../source/SPHysics2D Copy the generated Makefile to the
SPHysics2D source directory.

cd ../../source/SPHysics2D Change to source directory in order to
compile SPHysics using SPHysics.mak

make -f SPHysics.mak clean Remove any preexisting object files

55

make -f SPHysics.mak Compile and generate SPHysics_2D
using SPHysics.make. Similar to the
Makefiles for SPHysicsgen_2D, this
Makefile compiles and places the
SPHysics_2D executable in the execs
directory and moves the older
executable to the execs.bak directory

rm SPHysics.mak Remove the Makefile from the
source/SPHysics2D directory.

cd ../../run_directory/Case1 Change to the Case1 example directory.

../../execs/SPHysics_2D Execute SPHysics_2D and direct the
output from the run to sph.out

4.1.2. Compiling and executing on Windows.

In the SPHysics_2D/source/SPHysicsgen2D directory there are two Makefiles named
SPHysicsgen_cvf.mak and SPHysicsgen_ftn95.mak. They are used to compile
SPHysicsgen_2D using the CVF compiler and Silverfrost FTN95 compiler (previously
Salford Fortran).

As mentioned before, SPHysicsgen_2D, based on the options chose by the user,
generates the Makefile, SPHysics.mak, to compile the main program SPHysics. The
subroutine tocompile_windows and tocompile_ftn95, in SPHysicsgen_2D, write out
SPHysics.mak for cvf and silverfrost ftn95 compilers respectively.

There are windows batch files located in the example directories, The batch file
Case1_windows_cvf.bat located in SPHysics\SPHysics_2D\run_directory\Case1 (see
Fig. 3.1) is used. Similar batch files correspond to other 2D examples. Examples
corresponding to 3D calculations can be found in
.\SPHysics\SPHysics_3D\run_directory\Case1
The user should, while in the Case1 directory, write Case1_windows_cvf.bat on a
command window. The content of this file is briefly describe in next table.

COMMAND COMMENTS
del *.exe Remove previous executable files.

cd ..\..\source\SPHYSICSgen2D

Change to the directory
containing the SPHysicsgen_2D
source files

56

NMAKE/f"SPHYSICSgen_cvf.mak"

NMAKE /f "SPHysicsgen.mak" is
used to compile SPHysicsgen_2D.exe.

cd ..\..\ run_directory\Case1 Change directory

copy..\..\execs\SPHysicsgen_2D.exe
SPHysicsgen_2D.exe

Copy SPHysicsgen_2D.exe file to the
working directory.

SPHysicsgen_2D.exe <Case1.txt > Case1.out Run SPHysicsgen_2D.exe.
This program creates the initial
conditions and select the options of
the run. In addition, it also creates a
file SPHysics.mak that can be used to
compile the SPHysics_2D code with
the right options.
Any name can be used for the input
and output files

copy SPHysics.mak
..\..\source\SPHysics_2D\SPHysics.mak

Copy the SPHysics.mak file to the
place where the SPHysics_2D source
files are located.

cd ..\..\execs\ Change to the directory where the
executable file will be created.

del *.obj Remove previous object files
del SPHysics_2D.exe Remove previous executable versions

of SPHysics_2D.exe
cd..\source\SPHysics_2D Change to the directory containing the

SPHysics_2D source files
NMAKE /f "SPHysics.mak" NMAKE /f "SPHysics.mak" is used to

compile SPHysics_2D.exe. There are
multiple options to compile
SPHysics_2D.exe. They are
automatically selected depending on
the initial conditions provided by the
input file (Case1.txt in this example).
The file SPHysics.mak, which is
automatically created by
SPHysicsgen_2D.exe, contains
information about those options.

cd ..\..\ run_directory\Case1 Change directory
copy ..\..\execs\SPHysics_2D.exe
SPHysics_2D.exe

Copy SPHysics_2D.exe file to the
working directory

SPHysics_2D.exe >sph.out Run the case.
Any name can be used for the output
file sph.out

57

4.2. Test case 1: 2D Dam break in a box

The case can be run using Case1.bat (Case1_windows_cvf.bat,
Case1_windows_ftn95.bat, Case1_unix_gfortran.bat or Case1_unix_ifort.bat) whose
output directory is Case1. The input file Case1.txt is located in the output directory. The
information contained in that file can be summarized as follows:

Figure 4.1: Initial configuration of Case1.

Input data Variable description

0

Choose Starting options: 0=new, 1=restart, 2=new with CheckPointg, 3=restart

with CheckPointing

5 Kernel: 1=gaussian, 2=quadratic; 3=cubic; 5=Wendland

1

Time-stepping algorithm: 1=Predictor-corrector, 2=Verlet, 3=Symplectic,

4=Beeman

2 Density Filter: 0=none, 1=Shepard filter, 2=MLS

30 ndt_FilterPerform (if density filter is used) ?

0 Kernel correction 0=None, 1=Kernel correction, 2=Gradient kernel Correction

1 Viscosity treatment: 1=artificial; 2=laminar; 3=laminar + SPS

0.3 Viscosity value(if visc.treatment=1 it's alpha, if not kinem. visc approx 1.e-6)

0 vorticity printing ? (1=yes)

1 Equation of State: 1=Tait's equation, 2=Ideal Gas, 3= Morris

2 Maximum Depth (h_SWL) to calculate B

10 Coefficient of speed of sound (recommended 10 - 40) ??

2 Boundary Conditions: 1=Repulsive Force; 2=Dalrymple

15 ndt_DBCPerform ? (1 means no correction)

1 Geometry of the zone: 1=BOX, 2=BEACH, 3=COMPLEX GEOMETRY

2 Initial Fluid Particle Structure: 1= SC, 2= BCC

4.,4. Box dimension LX,LZ?

0.03,0.03 Spacing dx,dz?

58

0 Inclination of floor in X (beta) ??

0,0,0 Periodic Lateral boundaries in X, Y, & Z-Directions ? (1=yes)

0 Add wall

0 Add obstacle (1=y)

0 Add wavemaker (1=y)

0 Add gate (1=y)

0 Add Floating Body (1=yes)

2 Initial conditions: 2) particles on a staggered grid

0 Correct pressure at boundaries ?? (1=y)

0.03,1. Cube containing particles : XMin, Xmax ??

0.03,2. Cube containing particles : ZMin, Zmax ??

0 Fill a new region

3,0.02 Input the tmax and out

0. initial time of outputting general data

0.0005,1.0,-

1.0 For detailed recording during RUN: out_detail, start, end

0.0001,1 Input dt?? , i_var_dt ??

0.2 CFL number (0.1-0.5)

0.92 h=coefficient*sqrt(dx*dx+dz*dz): coefficient ???

0

Use of Riemann Solver: 0=None, 1=Conservative (Vila), 2=NonConservative

(Parshikov)

3 Which compiler is desired: 1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95

1 Precision of XYZ Variables: 1=Single, 2=Double

59

Figure 4.2: X-Velocity plot in Case1.

60

4.3. Test case 2: 2D Dam break evolution over a wet bottom in a box.

The case can be run using Case2.bat whose output directory is Case2. The input file
Case2.txt is located in the output directory. The information contained in that file can be
summarized as follows:

Figure 4.3: Initial configuration of Case2

Input data Variable description

0

Choose Starting options: 0=new, 1=restart, 2=new with CheckPointg, 3=restart

with CheckPointing

3 Kernel: 1=gaussian, 2=quadratic; 3=cubic; 5=Wendland

1

Time-stepping algorithm: 1=Predictor-corrector, 2=Verlet, 3=Symplectic,

4=Beeman

0 Density Filter: 0=none, 1=Shepard filter, 2=MLS

0 Kernel correction 0=None, 1=Kernel correction, 2=Gradient kernel Correction

1 Viscosity treatment: 1=artificial; 2=laminar; 3=laminar + SPS

0.08 Viscosity value(if visc.treatment=1 it's alpha, if not kinem. visc approx 1.e-6)

0 Vorticity printing ? (1=yes)

1 Equation of State: 1=Tait's equation, 2=Ideal Gas, 3= Morris

0.15 Maximum Depth (h_SWL) to calculate B

13 Coefficient of speed of sound (recommended 10 - 40) ??

2 Boundary Conditions: 1=Repulsive Force; 2=Dalrymple

1 ndt_DBCPerform ? (1 means no correction)

1 Geometry of the zone: 1=BOX, 2=BEACH, 3=COMPLEX GEOMETRY

2 Initial Fluid Particle Structure: 1= SC, 2= BCC

2,0.16 Box dimension LX,LZ?

0.005,0.005 Spacing dx,dz?

0 Inclination of floor in X (beta) ??

0,0,0 Periodic Lateral boundaries in X, Y, & Z-Directions ? (1=yes)

0 Add wall

0 Add an obstacle (1=y)

0 Add wavemaker (1=y)

1 Add gate (1=y)

0.388 Gate position in X coordinates ??'

0.,0.16 Gate height ??

61

0.,1.5 Gate Velocity ??

0 t gate??

0 Add new gate (1=y)

0 Add Floating Bodies (1=yes) ?

2 Initial conditions: 2) particles on a staggered grid

0 Correct pressure at boundaries ?? (1=y)

0.005,0.376 Cube containing particles : XMin, Xmax ??

0.005,0.15 Cube containing particles : ZMin, Zmax ??

1 Fill a new region

0.40,1.995 Cube containing particles : XMin, Xmax ??

0.005,0.018 Cube containing particles : ZMin, Zmax ??

0 Fill a new region

1.2,0.01 Input the tmax and out

0.0 Initial time of outputting general data

0.0005,1.0,-

1.0 For detailed recording during RUN: out_detail, start, end

0.0001,1 Input dt, i_var_dt ??

0.2 CFL number (0.1-0.5)

0.92 h=coefficient*sqrt(dx*dx+dz*dz): coefficient ???

0

Use of Riemann Solver: 0=None, 1=Conservative (Vila), 2=NonConservative

(Parshikov)

3 Which compiler is desired: 1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95

1 Precision of XYZ Variables: 1=Single, 2=Double

62

Figure 4.4: Density plot in Case2

Kg/m3

63

4.4. Test case 3: Waves generated by a paddle in a beach

The case can be run using Case3.bat whose output directory is Case3. The input file
Case3.txt is located in the output directory. The information contained in that file can be
summarized as follows:

4.4.1 Case 2D

Figure 4.5: Initial configuration of Case3 in 2D.

Input data Variable description

0

Choose Starting options: 0=new, 1=restart, 2=new with CheckPointg, 3=restart with

CheckPointing

3 Kernel: 1=gaussian, 2=quadratic; 3=cubic; 5=Wendland

3 Time-stepping algorithm: 1=Predictor-corrector, 2=Verlet, 3=Symplectic, 4=Beeman

1 Density Filter: 0=none, 1=Shepard filter, 2=MLS

30 ndt_FilterPerform (if density filter is used) ?

0 Kernel correction 0=None, 1=Kernel correction, 2=Gradient kernel Correction

2 Viscosity treatment: 1=artificial; 2=laminar; 3=laminar + SPS

1.0e-6 Viscosity value(if visc.treatment=1 it's alpha, if not kinem. visc approx 1.e-6)

0 Vorticity printing ? (1=yes)

1 Equation of State: 1=Tait's equation, 2=Ideal Gas, 3= Morris

0.2 Maximum Depth (h_SWL) to calculate B

16 Coefficient of speed of sound (recommended 10 - 40) ??

1 Boundary Conditions: 1=Repulsive Force; 2=Dalrymple

1.0e-5 Wall viscosity value for Repulsive Force BC

2 Geometry of the zone: 1=BOX, 2=BEACH, 3=COMPLEX GEOMETRY

1 Initial Fluid Particle Structure: 1= SC, 2= BCC

3.75,0.3 Box dimension LX, LZ?

0.01,0.01 Spacing dx, dz?

1.0 Length of Flat Domain

4.2364 Slope (deg) of the inclined plane (beta) ??

0,0,0 Periodic Lateral boundaries in X, Y, & Z-Directions ? (1=yes)

1 If wavemaker will be added, left pannel is not needed (1=yes)

0 Add obstacle (1=yes)

64

2 Enter Paddle-Type: 1=Piston, 2=Piston-flap, 3=Piston with prescribed motion

0.13 X_PaddleCentre

0.15 paddle_SWL

0.1344 flap_length = distance of pivot point under bed

0.0,0.3 ZZMin, ZZmax of the wavemaker ??

0.0 Initial time of wavemaker = twavemaker ??

1 Number of frequencies ??

0.2422 Wavemaker Stroke = 2*Amplitude ??

1.4 Period ??

0 Phase ??

0 twinitial ??

0 Add another wavemaker inside the beach (1=yes)

0 Add gate (1=yes)

0 Add Sliding Raichlen Wedge (1=yes)

0 Add Floating Body (1=yes)

1 Add water in the flat region ?? (1=yes)

0, 1.0 Cube containing particles : XMin, Xmax ??

0.025, 0.18 Cube containing particles : ZMin, Zmax ??

1 Add water in the inclined region ?? (1=yes)

1.01, 3.75 Cube containing particles : XMin, Xmax ??

0.025, 0.18 Cube containing particles : ZMin, Zmax ??

0 Add a solitary wave ?? (1=yes)

5.0,0.05 Input the tmax and out

0.0 initial time of recording

0.0,1.0,-1.0 detailed recording: out_dtrecording, Start time, End Time

0.000045,1 input dt ??, variable dt ??

0.2 CFL number (0.1-0.5)

0.92 h=coefficient*sqrt(dx*dx+dy*dy+dz*dz): coefficient ???

0

Use of Riemann Solver: 0=None, 1=Conservative (Vila), 2=NonConservative

(Parshikov)

3 Which compiler is desired: 1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95

2 Precision of XYZ Variables: 1=Single, 2=Double

65

Figure 4.6: Wave formation in Case3 (for 2D).

66

4.4.2 Case 3D

Figure 4.7: Initial configuration of Case3 in 3D.

Input data Variable description

0

Choose Starting options: 0=new, 1=restart, 2=new with CheckPointg, 3=restart

with CheckPointing

2 Kernel: 1=gaussian, 2=quadratic; 3=cubic; 5=Wendland

1 Time-stepping algorithm: 1=predictor-corrector, 2=verlet, 3=symplectic, 4=Beeman

1 Density Filter: 0=none, 1=Shepard filter, 2=MLS

30 ndt_FilterPerform (if density filter is used) ?

0 Kernel correction 0=None, 1=Kernel correction, 2=Gradient kernel Correction

3 Viscosity treatment 1=artificial; 2=laminar; 3=laminar + SPS

1.0e-6 Viscosity value(if visc.treatment=1 it's alpha, if not kinem. visc approx 1.e-6)

0 Vorticity printing ? (1=yes)

1 Equation of State: 1=Tait's equation, 2=Ideal Gas, 3= Morris

0.15 Maximum Depth (Hmax) to calculate B

16 coefficient (10 , 40) ??

1 Boundary Conditions: Monaghan = 1 or Dalrymple = 2

8.0e-1 Wall viscosity value for Repulsive Force BC

2 Geometry of the zone: 1=BOX, 2=BEACH, 3=COMPLEX GEOMETRY

2 Initial Fluid Particle Structure: 1= SC, 2= BCC

2.75,0.20,0.25 Box dimension LX, LY, LZ?

0.02,0.02,0.02 Spacing dx, dy, dz?

0.5 Length of Flat Domain

4.2364 Slope (deg) of the inclined plane (beta) ??

0,1,0 Periodic Lateral boundaries in X, Y, & Z-Directions ? (1=yes)

1 If wavemaker will be added, left pannel is not needed (1=yes)

0 Add obstacle (1=yes)

2 Enter Paddle-Type: 1=Piston, 2=Piston-flap, 3=Piston with prescribed motion

67

0.20 X_PaddleCentre

0.15 paddle_SWL

0.1344 flap_length = distance of pivot point under bed

0.0,0.2 YYMin, YYmax of the wavemaker ??

0.0,0.25 ZZMin, ZZmax of the wavemaker ??

0.0 Initial time of wavemaker = twavemaker ??

1 Number of frequencies ??

0.2442 Wavemaker Stroke = 2*Amplitude ??

1.4 Period ??

0 Phase ??

0 twinitial ??

0 Add another wavemaker inside the beach (1=yes)

0 Add gate (1=yes)

0 Add Sliding Raichlen Wedge (1=yes)

0 Add Floating Body (1=yes,0=no)

1 Add water in the flat region ?? (1=yes)

0, 0.49 Cube containing particles : XMin, Xmax ??

0.00, 0.20 Cube containing particles : YMin, Ymax ??

0.02, 0.15 Cube containing particles : ZMin, Zmax ??

1 Add water in the inclined region ?? (1=yes)

0.50, 2.5 Cube containing particles : XMin, Xmax ??

0.00, 0.20 Cube containing particles : YMin, Ymax ??

0.02, 0.15 Cube containing particles : ZMin, Zmax ??

0 Add a solitary wave ?? (1=yes)

5.0,0.025 Input the tmax and out

0.0 initial time of recording

0,1,-1 detailed recording: out_dtrecording, Start time, End Time

0.00005,0 input dt ??, variable dt ??

0.2 CFL number (0.1 - 0.5)

0.866025 h=coefficient*sqrt(dx*dx+dy*dy+dz*dz): coefficient ???

0

Use of Riemann Solver: 0=None, 1=Conservative (Vila), 2=NonConservative

(Parshikov)

3 Which compiler is desired: 1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95

2 Precision of XYZ Variables: 1=Single, 2=Double

68

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

4.5. Test case 4: Tsunami generated by a sliding Wedge

The case can be run using Case4.bat whose output directory is Case4. The input file
Case4.txt is located in the output directory. The information contained in that file can be
summarized as follows:

4.5.1 Case 2D

Figure 4.8: Initial configuration of Case4 in 2D.

Input data Variable description

0

Choose Starting options: 0=new, 1=restart, 2=new with CheckPointg, 3=restart

with CheckPointing

2 Kernel: 1=gaussian, 2=quadratic; 3=cubic; 5=Wendland

1

Time-stepping algorithm: 1=predictor-corrector, 2=Verlet, 3=Symplectic,

4=Beeman

1 Density Filter: 0=none, 1=Shepard filter, 2=MLS

30 ndt_FilterPerform (if density filter is used) ?

0 Kernel correction 0=None, 1=Kernel correction, 2=Gradient kernel Correction

3 Viscosity treatment: 1=artificial; 2=laminar; 3=laminar + SPS

1.0e-6 Viscosity value(if visc.treatment=1 it's alpha, if not kinem. visc approx 1.e-6)

0 Vorticity printing ? (1=yes)

1 Equation of State: 1=Tait's equation, 2=Ideal Gas, 3= Morris

3.0 Maximum Depth (h_SWL) to calculate B

16 Coefficient of speed of sound (recommended 10 - 40) ??

1 Boundary Conditions: 1=Repulsive Force; 2=Dalrymple

2.0e-4 Wall viscosity value for Repulsive Force BC

2 Geometry of the zone: 1=BOX, 2=BEACH, 3=COMPLEX GEOMETRY

69

1 Initial Fluid Particle Structure: 1= SC, 2= BCC

9.5,4.0 Box dimension LX, LZ?

0.05,0.05 Spacing dx, dz?

2.25 Length of Flat Domain

26.565051 Slope (deg) of the inclined plane (beta) ??

0,0,0 Periodic Lateral boundaries in X, Y, & Z-Directions ? (1=yes)

0 If wavemaker will be added, left pannel is not needed (1=yes)

0 Add obstacle (1=yes)

0 Add gate (1=yes)

1 Add Raichlen Wedge (1=yes)

0.3 Enter block-top elevation above SWL

2.14 Enter specific Weight

0.91, 0.455,

0.61 Enter block_length, block_height, block_width

0.04, 0.04 Enter block dxW, dzW

0 Add Floating Body (1=yes)

1 Add water in the flat region ?? (1=yes)

0.05, 2.25 Cube containing particles : XMin, Xmax ??

0.05, 3.5 Cube containing particles : ZMin, Zmax ??

1 Add water in the inclined region ?? (1=yes)

2.30, 9.5 Cube containing particles : XMin, Xmax ??

0.05, 3.5 Cube containing particles : ZMin, Zmax ??

0 Add a solitary wave ?? (1=yes)

3.0,0.015 Input the tmax and out

0.0 initial time of outputting general data

0,1.0,-1.0 For detailed recording: out_dtrecording, Start time, End Time

0.00011,1 input dt ??, variable dt ??

0.2 CFL number (0.1 - 0.5)

0.92 h=coefficient*sqrt(dx*dx+dy*dy+dz*dz): coefficient ???

0

Use of Riemann Solver: 0=None, 1=Conservative (Vila), 2=NonConservative

(Parshikov)

3 Which compiler is desired: 1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95

2 Precision of XYZ Variables: 1=Single, 2=Double

70

Figure 4.9: Tsunami generation using sliding Wedge (for 2D).

71

4.5.2. Case 3D

Figure 4.10: Initial configuration of Case4 in 3D.

Input data Variable description

0

Choose Starting options: 0=new, 1=restart, 2=new with CheckPointg, 3=restart

with CheckPointing

2 Kernel: 1=gaussian, 2=quadratic; 3=cubic; 5=Wendland

1

Time-stepping algorithm: 1=Predictor-corrector, 2=Verlet, 3=Symplectic,

4=Beeman

1 Density Filter: 0=none, 1=Shepard filter, 2=MLS

30 ndt_FilterPerform (if density filter is used) ?

0 Kernel correction 0=None, 1=Kernel correction, 2=Gradient kernel Correction

3 Viscosity treatment: 1=artificial; 2=laminar; 3=laminar + SPS

1.0e-6 Viscosity value(if visc.treatment=1 it's alpha, if not kinem. visc approx 1.e-6)

0 vorticity printing ? (1=yes)

1 Equation of State: 1=Tait's equation, 2=Ideal Gas, 3= Morris

2.5 Maximum Depth (h_SWL) to calculate B

16 Coefficient of speed of sound (recommended 10 - 40) ??

1 Boundary Conditions: 1=Repulsive Force; 2=Dalrymple

8.0e-6 Wall viscosity value for Repulsive Force BC

2 Geometry of the zone: 1=BOX, 2=BEACH, 3=COMPLEX GEOMETRY

2 Initial Fluid Particle Structure: 1= SC, 2= BCC

8.5,2.7,3.0 Box dimension LX, LY, LZ?

0.15,0.15,0.15 Spacing dx, dy, dz?

2.25 Length of Flat Domain

26.565051 Slope (deg) of the inclined plane (beta) ??

72

0,1,0 Periodic Lateral boundaries in X, Y, & Z-Directions ? (1=yes)

0 If wavemaker will be added, left pannel is not needed (1=yes)

0 Add obstacle (1=yes)

0 Add gate (1=yes)

1 Add Raichlen Wedge (1=yes)

0.3 Enter block-top elevation above SWL

2.14 Enter specific Weight

0.91, 0.455,

0.61 Enter block_length, block_height, block_width

0.04, 0.04,

0.04 Enter block dxW, dyW, dzW

0 Add Floating Body (1=yes)

1 Add water in the flat region ?? (1=yes)

0.075, 2.25 Cube containing particles : XMin, Xmax ??

0.0751, 2.651 Cube containing particles : YMin, Ymax ??

0.075, 2.5 Cube containing particles : ZMin, Zmax ??

1 Add water in the inclined region ?? (1=yes)

2.3249999,

8.5 Cube containing particles : XMin, Xmax ??

0.0751, 2.651 Cube containing particles : YMin, Ymax ??

0.075, 2.5 Cube containing particles : ZMin, Zmax ??

0 Add a solitary wave ?? (1=yes)

3.0,0.015 Input the tmax and out

0.0 initial time of recording

0,1,-1 detailed recording: out_dtrecording, Start time, End Time

0.0001729,1 input dt ??, variable dt ??

0.2 CFL number (0.1 - 0.5)

0.866025 h=coefficient*sqrt(dx*dx+dy*dy+dz*dz): coefficient ???

0

Use of Riemann Solver: 0=None, 1=Conservative (Vila), 2=NonConservative

(Parshikov)

3 Which compiler is desired: 1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95

2 Precision of XYZ Variables: 1=Single, 2=Double

73

4.6. Test case 5: 3D dam-break interaction with a structure

The case can be run using Case5.bat whose output directory is Case5. The input file
Case5.txt is located in the output directory. The information contained in that file can be
summarized as follows:

Figure 4.11: Initial configuration of Case5.

Input data Variable description

0

Choose Starting options: 0=new, 1=restart, 2=new with CheckPointg,

3=restart with CheckPointing

3 Kernel: 1=gaussian, 2=quadratic; 3=cubic; 5=Wendland

1

Time-stepping algorithm: 1=predictor-corrector, 2=verlet, 3=symplectic,

4=Beeman

2 Density Filter: 0=none, 1=Shepard filter, 2=MLS

30 ndt_FilterPerform

0 Kernel correction 0=None, 1=Kernel correction, 2=Gradient kernel Correction

1 Viscosity treatment 1=artificial; 2=laminar; 3=laminar + SPS

0.1 Viscosity value(if visc.treatment=1 it's alpha, if not kinem. visc approx 1.e-6)

0 Vorticity printing ? (1=yes)

1 Equation of State: 1=Tait's equation, 2=Ideal Gas, 3= Morris

0.30 Maximum Depth (h_SWL) to calculate B

10 coefficient (10 , 40) ??

2 Boundary Conditions: 1=Repulsive Force; 2=Dalrymple

1 ndt_DBCPerform ? (1 means no correction)

1 Geometry of the zone: 1=BOX, 2=BEACH, 3=COMPLEX GEOMETRY

2 Initial Fluid Particle Structure: 1= SC, 2= BCC

1.6,0.67,0.4 Box dimension LX,LY,LZ?

0.0225,0.0225,0.0225 Spacing dx,dy,dz?

74

0 inclination of floor in X (beta) ??

0 inclination of floor in Y (tita) ??

0,0,0 Periodic Lateral boundaries in X, Y, & Z-Directions ? (1=yes)

0 If wavemaker will be added, left wall is not needed

0 Add wall (1=y)

0 Add wall with slot (1=y)

0 Add wall with round hole (1=y)

1 Add obstacle (1=y)

1 Choose obstacle: 1=rectangular 2=trapezoid

2 Kind of obstacle: 1=Solid, 2=Solid Walls

2

Density of points(ndens): dxi_new=dxi_old/ndens (ndens >1 increases

density)

0.9,1.02 XMin, Xmax ??

0.24,0.36 YMin, Ymax ??

0.,0.45 ZMin, Zmax ??

90 slope

0 Add new obstacle (1=y)

0 Add wavemaker

0 Add gate

0 Add Floating Bodies (1=yes) ?

2 Initial conditions: 2) particles on a staggered grid without filling the box

0 Correct pressure at boundaries ?? (1=y)

0.0225,0.4 XMin, Xmax ??

0.0225,0.6475 YMin, Ymax ??

0.0225,0.36 ZMin, Zmax ??

1 Fill a new region

0.4225,0.8775 XMin, Xmax ??

0.0225,0.6475 YMin, Ymax ??

0.0225,0.03 ZMin, Zmax ??

1 Fill a new region

0.9,1.025 XMin, Xmax ??

0.0225,0.2175 YMin, Ymax ??

0.0225,0.03 ZMin, Zmax ??

1 Fill a new region

0.9,1.025 XMin, Xmax ??

0.3825,0.6475 YMin, Ymax ??

0.0225,0.03 ZMin, Zmax ??

1 Fill a new region

1.0425,1.5775 XMin, Xmax ??

0.0225,0.6475 YMin, Ymax ??

0.0225,0.03 ZMin, Zmax ??

0 Fill a new region

75

2,0.01 Input the tmax and out

0. initial time of outputting general data

0.0005,1.0,-1.0 For detailed recording during RUN: out_detail, start, end

0.00005,1 input dt ??, variable dt ??

0.2 CFL number (0.1-0.5)

0.866025 h=coefficient*sqrt(dx*dx+dy*dy+dz*dz): coefficient ???

0

Use of Riemann Solver: 0=None, 1=Conservative (Vila), 2=NonConservative

(Parshikov)

3 Which compiler is desired: 1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95

2 Precision of XYZ Variables: 1=Single, 2=Double

76

Figure 4.12: Interaction wave-structure in Case5

77

4.7. Test case 6: Floating bodies in waves

The case can be run using Case6.bat whose output directory is Case6. The input file
Case6.txt is located in the output directory. The information contained in that file can be
summarized as follows:

4.7.1 Case 2D

Figure 4.13: Initial configuration of Case6 in 2D.

Input data Variable description

0

Choose Starting options: 0=new, 1=restart, 2=new with CheckPointg, 3=restart with

CheckPointing

2 Kernel: 1=gaussian, 2=quadratic; 3=cubic; 5=Wendland

3

Time-stepping algorithm (1=Predictor-corrector, 2=Verlet, 3=Symplectic,

4=Beeman)

0 Density Filter: 0=none, 1=Shepard filter, 2=MLS

0 Kernel correction 0=None, 1=Kernel correction, 2=Gradient kernel Correction

2 Viscosity treatment: 1=artificial; 2=laminar; 3=laminar + SPS

1.0e-6 Viscosity value(if visc.treatment=1 it's alpha, if not kinem. visc approx 1.e-6)

0 Vorticity printing ? (1=yes)

1 Equation of State: 1=Tait's equation, 2=Ideal Gas, 3= Morris

0.18 Maximum Depth (h_SWL) to calculate B

16 Coefficient of speed of sound (recommended 10 - 40) ??

1 Boundary Conditions: 1=Repulsive Force; 2=Dalrymple

0.0e-3 Wall viscosity value for Repulsive Force BC

2 Geometry of the zone: 1=BOX, 2=BEACH, 3=COMPLEX GEOMETRY

1 Initial Fluid Particle Structure: 1= SC, 2= BCC

4.75,0.3 Box dimension LX, LZ?

0.01,0.01 Spacing dx, dz?

2.0 Length of Flat Domain

4.2364 Slope (deg) of the inclined plane (beta) ??

0,0,0 Periodic Lateral boundaries in X, Y, & Z-Directions ? (1=yes)

1 If wavemaker will be added, left pannel is not needed (1=yes)

0 Add obstacle (1=yes)

2 Enter Paddle-Type: 1=Piston, 2=Piston-flap, 3=Piston with prescribed motion

78

0.23 X_PaddleCentre

0.15 paddle_SWL

0.1344 flap_length = distance of pivot point under bed

0.0,0.3 ZZMin, ZZmax of the wavemaker ??

0.0 Initial time of wavemaker = twavemaker ??

1 Number of frequencies ??

0.2 Wavemaker Stroke = 2*Amplitude ??

1.4 Period ??

0 Phase ??

0 twinitial ??

0 Add another wavemaker inside the beach (1=yes)

0 Add gate (1=yes)

0 Add Sliding Raichlen Wedge (1=yes)

1 Add Floating Body (1=yes)

0.06, 0.06 Enter square cylinderDimension

1.0 Enter specific Weight

2.38, 0.16 Enter x,z of Bottom Left Corner (x_BottomLeft, z_BottomLeft)

0.0, 0.0 Enter (x,z) shift of Centre of Gravity for use in Parallel Axis Theorem

0.0, 0.0 Enter initial U,W velocity of Object

0.0, 0.0 Enter initial Body Angle and Rotation Rate (Omega) - Positive anticlockwise

0.20 Enter coefficient of Friction

1 Add another Floating Body (1=yes)

0.06, 0.06 Enter square cylinderDimension

1.0 Enter specific Weight

2.70, 0.16 Enter x,z of Bottom Left Corner (x_BottomLeft, z_BottomLeft)

0.0, 0.0 Enter (x,z) shift of Centre of Gravity for use in Parallel Axis Theorem

0.0, 0.0 Enter initial U,W velocity of Object

0.0, 0.0 Enter initial Body Angle and Rotation Rate (Omega) - Positive anticlockwise

0.20 Enter coefficient of Friction

1 Add another Floating Body (1=yes)

0.06, 0.06 Enter square cylinderDimension

1.0 Enter specific Weight

3.56, 0.22 Enter x,z of Bottom Left Corner (x_BottomLeft, z_BottomLeft)

0.0, 0.0 Enter (x,z) shift of Centre of Gravity for use in Parallel Axis Theorem

0.0, 0.0 Enter initial U,W velocity of Object

0.0, 10.0 Enter initial Body Angle and Rotation Rate (Omega) - Positive anticlockwise

0.20 Enter coefficient of Friction

0 Add another Floating Body (1=yes)

1 Add water in the flat region ?? (1=yes)

0, 2.0 Cube containing particles : XMin, Xmax ??

0.025, 0.18 Cube containing particles : ZMin, Zmax ??

1 Add water in the inclined region ?? (1=yes)

79

2.01, 4.75 Cube containing particles : XMin, Xmax ??

0.025, 0.18 Cube containing particles : ZMin, Zmax ??

0 Add a solitary wave ?? (1=yes)

7.0,0.0500 Input the tmax and out

0.0 initial time of recording

0.0,1.0,-1.0 detailed recording: out_dtrecording, Start time, End Time

0.00020,1 input dt ??, variable dt ??

0.2 CFL number (0.1-0.5)

0.92 h=coefficient*sqrt(dx*dx+dy*dy+dz*dz): coefficient ???

1

Use of Riemann Solver: 0=None, 1=Conservative (Vila), 2=NonConservative

(Parshikov)

1,1.3 Use TVD, slope limiter (beta_lim)?'

3 Which compiler is desired: 1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95

2 Precision of XYZ Variables: 1=Single, 2=Double

80

Figure 4.14: Floating bodies in waves 2D.

81

4.7.2. Case 3D

Figure 4.15: Initial configuration of Case6 in 3D.

Input data Variable description

0

Choose Starting options: 0=new, 1=restart, 2=new with CheckPointg, 3=restart

with CheckPointing

2 Kernel: 1=gaussian, 2=quadratic; 3=cubic; 5=Wendland

3

Time-stepping algorithm: 1=predictor-corrector, 2=verlet, 3=symplectic,

4=Beeman

0 Density Filter: 0=none, 1=Shepard filter, 2=MLS

0 Kernel correction 0=None, 1=Kernel correction, 2=Gradient kernel Correction

2 Viscosity treatment: 1=artificial; 2=laminar; 3=laminar + SPS

1.0e-6 Viscosity value(if visc.treatment=1 it's alpha, if not kinem. visc approx 1.e-6)

0 vorticity printing ? (1=yes)

1 Equation of State: 1=Tait's equation, 2=Ideal Gas, 3= Morris

0.15 Maximum Depth (Hmax) to calculate B

16 coefficient (10 , 40) ??

1 Boundary Conditions: 1=Repulsive Force; 2=Dalrymple

0.0e-1 Wall viscosity value for Repulsive Force BC

2 Geometry of the zone: 1=BOX, 2=BEACH, 3=COMPLEX GEOMETRY

2 Initial Fluid Particle Structure: 1= SC, 2= BCC

2.75,0.20,0.25 Box dimension LX, LY, LZ?

0.02,0.02,0.02 Spacing dx, dy, dz?

0.5 Length of Flat Domain

4.2364 Slope (deg) of the inclined plane (beta) ??

0,1,0 Periodic Lateral boundaries in X, Y, & Z-Directions ? (1=yes)

1 If wavemaker will be added, left pannel is not needed (1=yes)

0 Add obstacle (1=yes)

2 Enter Paddle-Type: 1=Piston, 2=Piston-flap, 3=Piston with prescribed motion

82

0.13 X_PaddleCentre

0.15 paddle_SWL

0.1344 flap_length = distance of pivot point under bed

0.0,0.2 YYMin, YYmax of the wavemaker ??

0.0,0.25 ZZMin, ZZmax of the wavemaker ??

0.0 Initial time of wavemaker = twavemaker ??

1 Number of frequencies ??

0.111 Wavemaker Stroke = 2*Amplitude ??

1.5 Period ??

0 Phase ??

0 twinitial ??

0 Add another wavemaker inside the beach (1=yes)

0 Add gate (1=yes)

0 Add Sliding Raichlen Wedge (1=yes)

1 Add Floating Body (1=yes)

0.06, 0.06,

0.06 Enter X, Y & Z cylinderDimensions

1.0 Enter specific Weight

1.0, 0.08,0.20 Enter x,y,z of Bottom Left Corner (x_BottomLeft, z_BottomLeft)

0.0, 0.0, 0.0 Enter (x,y,z) shift of Centre of Gravity for use in Parallel Axis Theorem

0.0, 0.0, 0.0 Enter initial U,V,W velocity of Object

0.0, 0.0, 0.0 Enter initial Body Angle in X, Y Z Directions

0.0, 0.0, 0.0 Enter initial Rotation Rate (Omega) in X, Y Z Directions

0.20 Enter coefficient of Friction

1 Add another Floating Body (1=yes)

0.06, 0.06,

0.06 Enter X, Y & Z cylinderDimensions

1.0 Enter specific Weight

1.6, 0.16,0.24 Enter x,y,z of Bottom Left Corner (x_BottomLeft, z_BottomLeft)

0.0, 0.0, 0.0 Enter (x,y,z) shift of Centre of Gravity for use in Parallel Axis Theorem

0.0, 0.0, 0.0 Enter initial U,V,W velocity of Object

0.0, 0.0, 0.0 Enter initial Body Angle in X, Y Z Directions

10.0, 0.0, 0.0 Enter initial Rotation Rate (Omega) in X, Y Z Directions

0.20 Enter coefficient of Friction

0 Add another Floating Body (1=yes,0=no)

1 Add water in the flat region ?? (1=yes)

0, 0.49 Cube containing particles : XMin, Xmax ??

0.00, 0.20 Cube containing particles : YMin, Ymax ??

0.02, 0.15 Cube containing particles : ZMin, Zmax ??

1 Add water in the inclined region ?? (1=yes)

0.50, 2.5 Cube containing particles : XMin, Xmax ??

0.00, 0.20 Cube containing particles : YMin, Ymax ??

83

0.02, 0.15 Cube containing particles : ZMin, Zmax ??

0 Add a solitary wave ?? (1=yes)

4.0,0.01 Input the tmax and out

0.0 initial time of recording

0,1,-1 detailed recording: out_dtrecording, Start time, End Time

0.00020,1 input dt ??, variable dt ??

0.4 CFL number (0.1-0.5)

0.866025 h=coefficient*sqrt(dx*dx+dy*dy+dz*dz): coefficient ???

1

Use of Riemann Solver: 0=None, 1=Conservative (Vila), 2=NonConservative

(Parshikov)

1,1.3 Use TVD, slope limiter (beta_lim)?'

3 Which compiler is desired: 1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95

2 Precision of XYZ Variables: 1=Single, 2=Double

84

4.8. Test case 7: Focused wave group approaching trapezoid

The case can be run using Case7.bat whose output directory is Case7. The input file
Case7.txt is located in the output directory. The information contained in that file can be
summarized as follows:

4.8.1. Case 2D

Figure 4.16: Initial configuration of Case7 in 2D.

Input data Variable description

0

Choose Starting options: 0=new, 1=restart, 2=new with CheckPointg,

3=restart with CheckPointing

3 Kernel: 1=gaussian, 2=quadratic; 3=cubic; 5=Wendland

1

Time-stepping algorithm: 1=Predictor-corrector, 2=Verlet, 3=Symplectic,

4=Beeman

0 Density Filter: 0=none, 1=Shepard filter, 2=MLS

2 Kernel correction 0=None, 1=Kernel correction, 2=Gradient kernel Correction

2 Viscosity treatment: 1=artificial; 2=laminar; 3=laminar + SPS

1.0e-6 Viscosity value(if visc.treatment=1 it's alpha, if not kinem. visc approx 1.e-6)

0 Vorticity printing ? (1=yes)

1 Equation of State: 1=Tait's equation, 2=Ideal Gas, 3= Morris

0.50 Maximum Depth (h_SWL) to calculate B

30 Coefficient of speed of sound (recommended 10 - 40) ??

1 Boundary Conditions: 1=Repulsive Force; 2=Dalrymple

8.0e-4 Wall viscosity value for Repulsive Force BC

2 Geometry of the zone: 1=BOX, 2=BEACH, 3=COMPLEX GEOMETRY

1 Initial Fluid Particle Structure: 1= SC, 2= BCC

13.0,0.8 Box dimension LX, LZ?

0.02,0.02 Spacing dx, dz?

1.48 Length of Flat Domain

2.8624 Slope (deg) of the inclined plane (beta) ??

0,0,0 Periodic Lateral boundaries in X, Y, & Z-Directions ? (1=yes)

1 If wavemaker will be added, left pannel is not needed (1=yes)

1 Add obstacle (1=yes)

2 Choose obstacle: 1=rectangular, 2=trapezoid

85

9.605,0.40625 Enter (x,z)-start of trapezoid

10.065,0.6085 Enter (x,z)-start of trapezoid top

10.28,0.6085 Enter (x,z)-finish of trapezoid top

10.62,0.457 Enter (x,z)-finish of trapezoid

0 Add another obstacle (1=yes)

3 Enter Paddle-Type: 1=Piston, 2=Piston-flap, 3=Piston with prescribed motion

0.0 X_PaddleCentre

FocusWavePaddle.dat Enter filename of prescribed motion

0.5 paddle_SWL

0.0,0.7 ZZMin, ZZmax of the wavemaker ??

0.0 Initial time of wavemaker = twavemaker ??

1 Number of frequencies ??

0.0 Wavemaker Stroke = 2*Amplitude ??

0 Period ??

0 Phase ??

0 twinitial ??

0 Add another wavemaker inside the beach (1=yes)

0 Add gate (1=yes)

0 Add Sliding Raichlen Wedge (1=yes)

0 Add Floating Body (1=yes)

1 Add water in the flat region ?? (1=yes)

0.0, 1.48 Cube containing particles : XMin, Xmax ??

0.02, 0.50 Cube containing particles : ZMin, Zmax ??

1 Add water in the inclined region ?? (1=yes)

1.50, 9.915 Cube containing particles : XMin, Xmax ??

0.02, 0.50 Cube containing particles : ZMin, Zmax ??

0 Add a solitary wave ?? (1=yes)

12.0,0.040 Input the tmax and out

0.0 initial time of recording

0.0,1.0,-1.0 detailed recording: out_dtrecording, Start time, End Time

0.00005,1 input dt ??, variable dt ??

0.2 CFL number (0.1 - 0.5)

0.92 h=coefficient*sqrt(dx*dx+dy*dy+dz*dz): coefficient ???

2

Use of Riemann Solver: 0=None, 1=Conservative (Vila), 2=NonConservative

(Parshikov)

1, 1.0 Use TVD Riemann Solver, slope limiter (beta_lim)

3 Which compiler is desired: 1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95

1 Precision of XYZ Variables: 1=Single, 2=Double

86

Figure 4.17: Pressure plot in Case7.

87

4.8.2. Case 3D

Figure 4.18: Initial configuration of Case7 in 3D.

Input data Variable description

0

Choose Starting options: 0=new, 1=restart, 2=new with CheckPointg,

3=restart with CheckPointing

3 Kernel: 1=gaussian, 2=quadratic; 3=cubic; 5=Wendland

1

Time-stepping algorithm: 1=Predictor-corrector, 2=Verlet, 3=Symplectic,

4=Beeman

0 Density Filter: 0=none, 1=Shepard filter, 2=MLS

2 Kernel correction 0=None, 1=Kernel correction, 2=Gradient kernel Correction

3 Viscosity treatment: 1=artificial; 2=laminar; 3=laminar + SPS

1.0e-6 Viscosity value(if visc.treatment=1 it's alpha, if not kinem. visc approx 1.e-6)

0 vorticity printing ? (1=yes)

1 Equation of State: 1=Tait's equation, 2=Ideal Gas, 3= Morris

0.5 Maximum Depth (h_SWL) to calculate B

16 Coefficient of speed of sound (recommended 10 - 40) ??

1 Boundary Conditions: 1=Repulsive Force; 2=Dalrymple

8.0e-5 Wall viscosity value for Repulsive Force BC

2 Geometry of the zone: 1=BOX, 2=BEACH, 3=COMPLEX GEOMETRY

1 Initial Fluid Particle Structure: 1= SC, 2= BCC

14.0,1.5,0.8 Box dimension LX, LY, LZ?

0.06,0.06,0.06 Spacing dx, dy, dz?

1.48 Length of Flat Domain

2.8624 Slope (deg) of the inclined plane (beta) ??

0,0,0 Periodic Lateral boundaries in X, Y, & Z-Directions ? (1=yes)

1 If wavemaker will be added, left pannel is not needed (1=yes)

1 Add obstacle (1=yes)

2 Choose obstacle: 1=rectangular, 2=trapezoid

10.357,0.443 Enter (x,z)-start of trapezoid

88

11.0,0.7 Enter (x,z)-start of trapezoid top

11.5,0.7 Enter (x,z)-finish of trapezoid top

12.,0.55 Enter (x,z)-finish of trapezoid

0.0,1.5 Enter YYMin, YYmax of trapezoid ??

0 Add another obstacle (1=yes)

3 Enter Paddle-Type: 1=Piston, 2=Piston-flap, 3=Piston with prescribed motion

0.0 X_PaddleCentre

FocusWavePaddle.dat Enter filename of prescribed motion

0.5 paddle_SWL

0.0,1.5 YYMin, YYmax of the wavemaker ??

0.0,0.7 ZZMin, ZZmax of the wavemaker ??

0.0 Initial time of wavemaker = twavemaker ??

1 Number of frequencies ??

0.0 Wavemaker Stroke = 2*Amplitude ??

0 Period ??

0 Phase ??

0 twinitial ??

0 Add another wavemaker inside the beach (1=yes)

0 Add gate (1=yes)

0 Add Sliding Raichlen Wedge (1=yes)

0 Add Floating Body (1=yes,0=no)

1 Add water in the flat region ?? (1=yes)

0.0, 1.48 Cube containing particles : XMin, Xmax ??

0.06, 1.44 Cube containing particles : YMin, Ymax ??

0.06, 0.5 Cube containing particles : ZMin, Zmax ??

1 Add water in the inclined region ?? (1=yes)

1.56, 11.0 Cube containing particles : XMin, Xmax ??

0.06, 1.44 Cube containing particles : YMin, Ymax ??

0.06, 0.5 Cube containing particles : ZMin, Zmax ??

0 Add a solitary wave ?? (1=yes)

10.0,0.10 Input the tmax and out

0.0 initial time of recording

0.0,1.0,-1.0 detailed recording: out_dtrecording, Start time, End Time

0.00005,1 input dt ??, variable dt ??

0.5 CFL number (0.1 - 0.5)

0.866025 h=coefficient*sqrt(dx*dx+dy*dy+dz*dz): coefficient ???

2

Use of Riemann Solver: 0=None, 1=Conservative (Vila), 2=NonConservative

(Parshikov)

1,1.4 Use TVD, slope limiter (beta_lim)?'

3 Which compiler is desired: 1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95

2 Precision of XYZ Variables: 1=Single, 2=Double

89

4.9. Test case 8: Floating bodies with 2D Periodicity

The case can be run using Case8.bat whose output directory is Case8. The input file
Case8.txt is located in the output directory.

Figure 4.19: Initial configuration of Case8.

Input data Variable description

0

Choose Starting options: 0=new, 1=restart, 2=new with CheckPointg, 3=restart

with CheckPointing

5 Kernel: 1=gaussian, 2=quadratic; 3=cubic; 5=Wendland

1

Time-stepping algorithm: 1=Predictor-corrector, 2=Verlet, 3=Symplectic,

4=Beeman

2 Density Filter: 0=none, 1=Shepard filter, 2=MLS

30 ndt_FilterPerform (if density filter is used) ?

0 Kernel correction 0=None, 1=Kernel correction, 2=Gradient kernel Correction

1 Viscosity treatment: 1=artificial; 2=laminar; 3=laminar + SPS

0.3 Viscosity value(if visc.treatment=1 it's alpha, if not kinem. visc approx 1.e-6)

0 vorticity printing ? (1=yes)

1 Equation of State: 1=Tait's equation, 2=Ideal Gas, 3= Morris

2 Maximum Depth (h_SWL) to calculate B

10 Coefficient of speed of sound (recommended 10 - 40) ??

2 Boundary Conditions: 1=Repulsive Force; 2=Dalrymple

15 ndt_DBCPerform ? (1 means no correction)

1 Geometry of the zone: 1=BOX, 2=BEACH, 3=COMPLEX GEOMETRY

2 Initial Fluid Particle Structure: 1= SC, 2= BCC

4.,4. Box dimension LX,LZ?

0.03,0.03 Spacing dx,dz?

0 Inclination of floor in X (beta) ??

1,0,0 Periodic Lateral boundaries in X, Y, & Z-Directions ? (1=yes)

0 Add wall

1 Add obstacle (1=y)

90

1 Choose rectangular (1) or trapezoid (2)

2 Which kind of obstacle: (1) Solid, (2) With Solid Walls

2 Density of points, ndens

1.00,2.0 Cube containing particles : XMin, Xmax ??

0.03,2.0 Cube containing particles : ZMin, Zmax ??

90.00 Inclination (beta) ??

0 Add another obstacle (1=y)

0 Add wavemaker (1=y)

0 Add gate (1=y)

1 Add Floating Body (1=yes)

0.25, 0.25 Enter X & Z cylinderDimensions

1.0 Enter specific Weight

3.50, 0.50 Enter x,z of Bottom Left Corner (x_BottomLeft, z_BottomLeft)

0.0, 0.0 Enter (x,z) shift of Centre of Gravity for use in Parallel Axis Theorem

0.0, 0.0 Enter initial U,W velocity of Object

0.0, 0.0 Enter initial Body Angle and Rotation Rate (Omega) - Positive anticlockwise

0.20 Enter coefficient of Friction

1 Add another Floating Body (1=yes)

0.25, 0.25 Enter X & Z cylinderDimensions

1.0 Enter specific Weight

0.875, 2.01 Enter x,z of Bottom Left Corner (x_BottomLeft, z_BottomLeft)

0.0, 0.0 Enter (x,z) shift of Centre of Gravity for use in Parallel Axis Theorem

0.0, 0.0 Enter initial U,W velocity of Object

0.0, 0.0 Enter initial Body Angle and Rotation Rate (Omega) - Positive anticlockwise

0.0 Enter coefficient of Friction

0 Add another Floating Body (1=yes)

2 Initial conditions: 2) particles on a staggered grid

0 Correct pressure at boundaries ?? (1=y)

2.03,3.0 Cube containing particles : XMin, Xmax ??

0.03,2. Cube containing particles : ZMin, Zmax ??

0 Fill a new region

3,0.02 Input the tmax and out

0. initial time of outputting general data

0.0005,1.0,-

1.0 For detailed recording during RUN: out_detail, start, end

0.0001,1 Input dt?? , i_var_dt ??

0.2 CFL number (0.1-0.5)

0.92 h=coefficient*sqrt(dx*dx+dz*dz): coefficient ???

0

Use of Riemann Solver: 0=None, 1=Conservative (Vila), 2=NonConservative

(Parshikov)

3 Which compiler is desired: 1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95

1 Precision of XYZ Variables: 1=Single, 2=Double

91

Figure 4.20: Floating bodies with 2D Periodicity.

92

93

5. HOW TO CHANGE SPHysics FOR YOUR APPLICATION

Introduction
When people start using the SPHysics code, we often get asked if the code can do a
particular function that is not included in the demonstration cases. The answer we give
is normally yes, but the particular functionality required may require some re-coding.
We do not normally propose to do this re-coding ourselves unless the application area
coincides closely with our own area and current projects, or there is a bug. The reason
behind this is that SPHysics is primarily a research code and we have released what we
have found useful for our own research. As the code is research oriented, it is up to the
user to adapt the code and the subroutines to their satisfaction.

This short section is aimed at helping those people who want to change the code for
their own purposes. Here, we list which subroutines in the code you should examine for
possible modification. Important Note: if you create any new subroutines for the main
source code, you must include the names of these new files in the “make files” used for
compiling the code which are written in subroutines tocompile_cvf,
tocompile_ftn95, tocompile_gfortran, tocompile_ifort in
SPHYSICSgen_2D/3D.f. Read Section 3.2.2.3 to see where each of the subroutines are
compiled.

1. Changing the motion of moving objects (forced motion)

movingObjects_2D/3D.f controls the calling of movingGate_2D/3D.f,
movingPaddle_2D/3D.f, movingWedge_2D/3D.f and
rigid_body_motion_2D/3D.f. If the motion you desire is not covered by these
subroutines, then you must create your own.

2. Changing the boundary conditions.
Boundary conditions are treated in each celij & self subroutines. Any
modification to the boundary conditions should be done in these subroutines.

3. Changing the timestepping algorithm
The timestepping is performed in all of the step subroutines:
step_predictor_corrector_2D/3D.f, step_verlet_2D/3D.f,
step_symplectic_ 2D/3D.f, step_Beeman_2D/3D.f. These subroutines
then call subroutines ac which control the sweep across the particles (or 2h grid) for
each (part of the) timestep.

4. Changing the kernel calculation
The smoothing kernel and its derivatives are calculated in the kernel subroutines:
kernel_gaussian_2D/3D.f, kernel_quadratic_2D/3D.f,

kernel_cubic_2D/3D.f and kernel_Wendland_2D/3D.f. In version 2.0 of
SPHysics, these can now optionally be corrected for lack of complete support in
subroutine kernel_correction (see Section 1.9).

5. Changing the viscous formulation

94

The viscous terms are all calculated in the viscosity subroutines which are called
from celij & self: viscosity_artificial_2D/3D.f,

viscosity_laminar_2D/3D.f, viscosity_laminar+SPS_2D/3D.f. For
the SPS turbulence model, the shear stresses are zeroed in subroutine ac and then
defined for the next timestep in subroutine correct_SPS_2D/3D.f.

6. Loading in data files and setting useful parameters
If you wish to examine and modify what data SPHysics loads initially, all the useful
data is imported in subroutine getdata_2D/3D.f Furthermore, all the useful
parameters that remain the same throughout the simulation are calculated here such
as the kernel normalization factors, etc. All global variables are stored in the
common blocks contained in common.2D/3D.

7. Zeroing variables
Many variables that are evaluated throughout the timestep, such as the accelerations,
ax, ay, az are zeroed initially in the different ac subroutines: ac_2D/3D.f,
ac_Conservative_2D/3D.f, ac_Shepard_2D/3D.f, ac_MLS_2D/3D.f,

ac_KGC_2D/3D.f, ac_KC_2D/3D.f .
8. Changing the input geometry

At present, SPHysics is limited to generating a few simple geometric structures both
in 2-D and 3-D such as boxes, planar beaches, triangular moving wedges, square
floating objects. Generating the geometry is controlled by the code
SPHYSICSgen_2D/3D.f. As explained in Section 3.2, the input case files can be
used to generate a mixture of these basic options. If you wish to modify or add new
options, you will need to edit and modify SPHYSICSgen_2D/3D.f. Here, we try
to give you some indications which subroutines to change:

(i) main geometric container shape: box, beach
(ii) static obstacles: trapezoid, wall, obstacles
(iii) filling the particles: fill_part (& maybe fluid_particles)
(iv) forced motion objects: gate, wavemaker,

RaichlenWedge_Particles, fill_part
(v) free-motion objects (floating): FloatingBody_Particles, fill_part

In future versions of the SPHysics code, a complex geometry generator already under
development (see http://wiki.manchester.ac.uk/sphysics/index.php/Contributors) will be
provided and will make creating new geometries and loading in CAD files more
accessible.

95

6. VISUALIZATION

To visualize the results obtained from SPHysics simulations, some basic post-
processing programs have been provided in the SPHysics_2D/Post-Processing and
SPHysics-3D/Post-Processing directories.

Detailed README files, explaining the procedure to view the results using Matlab and
Paraview, are available in those directories. The user is encouraged to read these
README files prior to using the visualization programs.

7. REFERENCES

Batchelor, G. K. 1974. Introduction to fluid dynamics. Cambridge University Press.

U.K.
Beeman, D. (1976). SomeMultistepMethods for Use inMolecular Dynamics

Calculations. Journal of Computational Physics, 20, 130–139.
Benz W. 1990. Smoothed Particle Hydrodynamics: A review in The numerical

Modelling of Nonlinear Stellar Pulsations: Problems and Prospects, J.R. Butchler
ed., Kluwer Acad. Publ. 269-288

Bonet J. and T.-S. L. Lok. Variational and momentum preservation aspects of Smoothed
Particle Hydrodynamic formulations, Comput. Methods Appl. Mech. Engrg, 180,
97-115, 1999.

Capone, T., Panizzo, A., Cecioni, C. and Dalrymple, R.A. (2007). “Accuracy and
Stability of Numerical Schemes in SPH'', SPHERIC Second Intl. Workshop,
Madrid.

Cha, S.-H., and Whitworth, A.P., Implementations and tests of Godunov-particle
hydrodynamics, Mon. Not. R. Astro. Soc., 340, 73-90, 2003.

Colagrossi A. and M. Landrini. Numerical simulation of interfacial flows by smoothed
particle hydrodynamics, J. Comp. Phys., 191, 448-475, 2003.

Crespo, A.J.C., Gómez- Gesteira, M and Dalrymple, R.A. 2007. Boundary conditions
generated by dynamic particles in SPH methods. Computers, materials & continua,
5(3): 173-184.

Dilts, G. A. Moving-Least–Squares-Particle Hydrodynamics – I. Consistency and
stability, Int. J. Numer. Meth. Engng, 44, 1115-1155, 1999.

Gómez-Gesteira, M. and Dalrymple, R. 2004. Using a 3D SPH method for wave impact
on a tall structure. J. Wtrwy. Port, Coastal and Ocean Engrg. 130(2): 63-69.

Gómez-Gesteira, M., Cerqueiro, D., Crespo, C., and Dalrymple, R. 2005. Green water
overtopping analyzed with a SPH model, Ocean Engineering. 32: 223-238.

Gotoh, H., Shao S., and Memita, T. 2004. SPH-LES model for numerical investigation
of wave interaction with partially immersed breakwater. Coastal Engineering
Journal, 46(1): 39-63.

96

Guilcher, P.M., Ducorzet, G., Alessandrini, B. and P. Ferrant, Water wave propagation
using SPH models, Proc. of 2nd Int. SPHERIC Workshop, Spain, 119-124, 2007.

Dalrymple, R.A. and Knio, O. 2000. SPH modelling of water waves,” Proc. Coastal
Dynamics, Lund.

Dalrymple, R.A. and Rogers, B.D. 2006. Numerical modeling of water waves with the
SPH method. Coastal Engineering 53: 141 – 147

Hirsch C. Numerical Computation of Internal and External Flows, Vol. 1, John Wiley
and Sons 1998.

Hughes, J. and Graham, D., Comparison of incompressible and weakly-compressible
SPH models fro free-surface water flows, J. Hyd. Res., in press, 2010.

Leimkuhler B J, Reich S, Skeel RD. Integration Methods for Molecular dynamic IMA
Volume in Mathematics and its application. Springer 1997.

Lo, E.Y.M. and Shao, S., Simulation of near-shore solitary wave mechanics by an
incompressible SPH method, Applied Ocean Research, 24, 275-286, 2002.

Liu, G.R. 2003. Mesh Free methods: Moving beyond the finite element method. CRC
Press, pp. 692.

Liu, W., Li, S., and Belytscho, T. 1997. “Moving least square Kernel Galerkin method
(I) methodology and convergence”. Comput. Methods Appl. Mech. Engineering.,
143:113.

Monaghan, J. J. 1982 Why particle methods work. Siam J. Sci. Stat. Comput. 3: 422-
433.

Monaghan, J. J. 1989. On the problem of penetration in particle methods. Journal
Computational Physics, 82: 1-15.

Monaghan, J. J. 1992. Smoothed particle hydrodynamics. Annual Rev. Astron. Appl.,
30: 543- 574.

Monaghan, J. J. 1994. Simulating free surface flows with SPH. Journal Computational Physics,
110: 399- 406.

Monaghan, J. J. 2000. SPH without tensile instability. Journal Computational Physics,
159: 290-311.

Monaghan, J. J. 2005. Smoothed Particle Hydrodynamics. Rep. Prog. Phys. 68: 1703-
1759.

Monaghan, J. J. and Kos, A. 1999. Solitary waves on a Cretan beach. J. Wtrwy. Port,
Coastal and Ocean Engrg., 125: 145-154.

Monaghan, J.J., and Lattanzio, J.C., 1985. A refined method for astrophysical problems.
Astron. Astrophys. 149: 135–143.

Monaghan, J.J., A. Kos, and N. Issa., Fluid motion generated by impact. J. of
Waterway, Port, Coastal and Ocean Engineering, 129, 250-259, 2003.

Morris, J.P., Fox, P.J. and Shu, Y. 1997. Modeling lower Reynolds number
incompressible flows using SPH. Journal Computational Physics, 136: 214-226.

Peskin, C. S. 1977. Numerical analysis of blood flow in the heart. Journal
Computational Physics 25: 220- 252.

Rogers, B.D. and R.A. Dalrymple, SPH Modeling of tsunami waves, Advances in
Coastal and Ocean Engineering, Vol. 10 Advanced Numerical Models for tsunami
waves and runup, World Scientific, 2008.

97

Rogers, B.D., Dalrymple, R.A., Stansby, P.K., Simulation of caisson breakwater
movement using SPH, Journal of Hydraulic Research, In Press, 2009.

Toro, E.F., Spruce, M. & Speares, W., Restoration of the contact surface in the HLL-
Riemann solver, Shock Waves, 4, 25-34, 1994.

Toro, E.F., Shock capturing methods for free surface shallow flows, John Wiley & Sons,
2001.

Verlet, L. 1967. Computer experiments on classical fluids. I. Thermodynamical
properties of Lennard-Jones molecules. Phys. Rev. 159: 98-103.

Vila, J.-P., On particle weighted methods and Smooth Particle Hydrodynamics,
Mathematical Models and Methods in Applied Sciences, 9(2), 161-209, 1999.

Wendland, H. 1995. Piecewiese polynomial, positive definite and compactly supported
radial functions of minimal degree. Advances in computational Mathematics 4(1):
389- 396.

98

99

8. APPENDIX: SPS Turbulence Model

This section provides a short overview of the LES-type Sub-Particle Scale (SPS)
turbulence model implemented in SPHysics. This work was inspired by the pioneering
work of Lo & Shao (2002). For a detailed description of turbulence and Large Eddy
Simulation (LES), the reader is referred to the comprehensive text by Pope (2000).

Large-eddy simulation (LES) for SPH
Large–eddy simulation (LES) is a numerical approach for modelling the effect of
turbulence. In mesh-based schemes, the principal idea of LES is that the largest scales
of motion are resolved by the grid while motions on the scales that are smaller than the
grid are modelled or represented by a Sub-Grid Scale (SGS) turbulence model. Hence,
the larger scales are solved explicitly while the SGS motions are modelled. The
physical reasoning behind this is that the main energy-containing scales are dependent
on the flow, while the smaller dissipative scales are more straightforward to characterise
in terms of energy dissipation. This avoids having to perform computationally
expensive Direct Numerical Simulation (DNS) calculations. However, there are still
some minimum requirements that an LES calculation must resolve 80% of the flow,
etc., (Pope 2000).
LES uses spatial filters in the surrounding grid to include the effect of the sub-grid
motions. This is based on the basic convolution integral for a variable u:

() () () ξξξxx d, , tuGtu ∫
Ω

−= , (A1)

where u is the spatially-filtered variable, x is a position in space, G is the filter function
(with characteristic length ∆) which can be a variety of functions including a box
function or a Fourier filter performed in the frequency domain, etc. The analogies
between SPH and LES are clear and have been noted by several researchers (Pope 2000,
Issa 2005, etc.). We can then decompose the velocity u into the sum of the mean spatial
average and a spatial fluctuation

uuu ′+= , (A2)

such that 0≠′u .

In LES, the equations being solved are commonly in the incompressible Navier-Stokes
equations. However, in SPH we are using the continuity equation for a slightly
compressible fluid to represent water, etc. Hence we are generally solving the
compressible Navier-Stokes equations. Here, for the presentation of LES-type
equations we use the standard tensor subscript notation of i and j to denote coordinate
directions:

() 0=
∂
∂+

∂
∂

j
j

u
xt

ρρ
 (A3b)

100

() () iijijji
j

i fpuu
x

u
t

=−+
∂
∂+

∂
∂ σδρρ (A3c)

() () jjjiijj
j

i ufquEu
x

E
t

=+−
∂
∂+

∂
∂ σρρ (A3d)

where ρ is density, uj is the velocity in the xi direction, p is pressure, δij is the delta

function (}{ jijiij ≠== 0 , 1δ), E is the total energy, q is a heat flux and the stress σ

is given by

kkijijij SS µδµσ 3
22 −= (A4)

And the strain rate tensor Sij is given by by

∂
∂

+
∂
∂=

i

j

j

i
ij x

u

x

u
S

2

1
. (A5)

We are then ready to apply the LES filter in Equation (A1) above to each equation of
(A3) in turn. Since we are solving the compressible Navier-Stokes equations, we use

Favre-averaging, ρρff =~
, which avoids the generation of SGS terms in the filtered

continuity equation. For the continuity and momentum equations, this gives us

() 0~ =
∂
∂+

∂
∂

j
j

u
xt

ρρ
 (A6a)

() ()
j

ij
ijijji

j
i x

puu
x

u
t ∂

∂
−=−+

∂
∂+

∂
∂ τ

σδρρ ~~~~ (A6b)

where τij are the Sub-Grid Scale (SGS) shear stresses that arise from the filtering
process and physically the represent the motion that occurs on a scale smaller than the
grid spacing ∆x:

()jijiij uuuu −−= ~~ρτ . (A7)

This SGS model then requires closure which is normally expressed as

() () 2
2

3
2

3
2 ~~~

2~~
ijijIijkkijtjijiij SCSSuuuu δρδνρρτ ∆−−≈−−= (A8)

Note that σ~ does not represent turbulent stresses, but the filtered laminar stress
components. The key part of any LES model is then providing a value for the turbulent
eddy viscosity νt which in SPHysics is achieved using a non-dynamic Smagorinsky
model:

() ijst SC
~2∆=ν . (A9)

In order to solve the LES equations in SPH, we express in Lagrangian form:

j

j

x

u

t ∂
∂

−=
~

d

d ρρ
 (A10a)

j

ij

j

ij

j

i

xxx

p

t

u

∂
∂

−
∂
∂

−
∂
∂−=

τ
ρ

σ
ρρ

1~11

d

~d
 (A10b)

References

101

Issa, R., Numerical assessment of the Smoothed Particle Hydrodynamics gridless
method for incompressible flows and its extension to turbulent flows, Ph.D.
Thesis, University of Manchester Institute of Science and Technology (UMIST),
2004.

Lo, E.Y.M. and Shao, S., Simulation of near-shore solitary wave mechanics by an
incompressible SPH method, Applied Ocean Research, 24, 275-286, 2002.

Pope, S.B., Turbulent Flows, Cambridge University Press, 2000.

102

9. PUBLICATIONS USING THE SPHysics CODE

Journal Papers

Dalrymple, R.A. and B.D. Rogers, "Numerical Modeling of Water Waves with the SPH

Method," Coastal Engineering, 53/2-3, 141-147, 2006.
Crespo, A.J., M. Gómez-Gesteira, and R.A. Dalrymple, "Boundary Conditions

Generated by Dynamic Particles in SPH Methods”, CMC: Computers, Materials, &
Continua, 5, 3, 173-184, 2007.

Gómez-Gesteira, M., D. Cerquiero, A.J.C. Crespo and R.A. Dalrymple, "Green Water
Overtopping Analyzed with an SPH Model," Ocean Engineering, 32, 2, 223-238,
2005.

Gómez-Gesteira, M., R.A. Dalrymple, A.J.C. Crespo, and D. Cerquiero, "Uso de la
Tecnica SPH para el Estudio de la Interaccion entre Olas y Estructuras," Ingenieria
del Agua, 11, 2, 2004.

Gómez-Gesteira, M. and R.A. Dalrymple, "Using a 3D SPH Method for Wave Impact
on a Tall Structure, J. Waterways, Port, Coastal, Ocean Engineering, 130, 2, 63-69,
2004.

Crespo, A.J.C., M. Gómez-Gesteira, and R.A. Dalrymple, “3D SPH Simulation of large
waves mitigation with a dike”, Journal of Hydraulic Research, 45, 5, 631-642, 2007.

Crespo, A.J.C., M. Gómez-Gesteira, and R.A. Dalrymple, "Modeling Dam Break
Behavior over a Wet Bed by a SPH Technique", Journal of Waterway, Port, Coastal
and Ocean Engineering, 134(6), 3131320, 2008.

M. Gómez-Gesteira, B. D. Rogers, R. A. Dalrymple and A.J.C. Crespo, " State of the art
of classical SPH for free-surface flows", Journal of Hydraulic Research, In Press,
2010.

M. Gómez-Gesteira, B. D. Rogers, D. Violeau, J. M. Grassa and A.J.C. Crespo, " SPH
for free-surface flows", Journal of Hydraulic Research, In Press, 20010.

M. S. Narayanaswamy, A.J.C. Crespo, M. Gómez-Gesteira and R. A. Dalrymple, "
SPHysics-Funwave hybrid model for coastal wave propagation", Journal of
Hydraulic Research, In Press, 2010.

Rogers, B.D., Dalrymple, R.A., Stansby, P.K., Simulation of caisson breakwater
movement using SPH, Journal of Hydraulic Research, In Press, 2010.

Conference Proceedings

Crespo, A.J., M. Gómez-Gesteira, and R.A. Dalrymple, “Vorticity Generated By A

Dam Break Over A Wet Bed Modeled By Smoothed Particle Hydrodynamics”,
Proceedings of 32nd Congress of IAHR, the International Association of Hydraulic
Engineering & Research, CORILA, 2007.

Dalrymple, R., B.D. Rogers, M. Narayanaswamy, S. Zou, M. Gesteira, A.J.C. Crespo
and A. Panizzo, “Smoothed Particle Hydrodynamics for Water Waves”, Proceedings

103

of the 26th International Conference on Offshore Mechanics and Artic Engineering,
ASME, 2007.

Rogers, B.D. and R.A. Dalrymple, "Three-Dimensional SPH-SPS Modeling of Wave
Breaking", Symposium on Ocean Wave Measurements and Analysis, ASCE, Madrid,
2005.

Dalrymple, R.A., ``New Technology: SPH for Coastal Processes, Keynote Address,
Symposium on Ocean Wave Measurements and Analysis, ASCE, Madrid, 2005.

Narayanaswamy, M. and R.A. Dalrymple, "A Hybrid Boussinesq and SPH Model for
Forced Oscillations", Symposium on Ocean Wave Measurements and Analysis,
ASCE, Madrid, 2005.

Rogers, B.D. and R.A. Dalrymple, "SPH Modeling of Breaking Waves", Proc. 29th
Intl. Conference on Coastal Engineering, Lisbon, World Scientific Press, 2004.

Book Chapters

Rogers, B.D. and R.A. Dalrymple, "SPH Modeling of Tsunamis", Proc. Intl. Workshop

on Longwave Run-up, Advances in Coastal Engineering Series, P.L.-F. Liu, ed.,
World Scientific In Press, 2006.

Dalrymple, R.A., Gómez-Gesteira, M., Rogers, B.D., Panizzo, A., Zou, S., Crespo,
A.J.C., Cuomo, G., And Narayanaswamy, M., “Smoothed Particle Hydrodynamics
for Water Waves”, in Advances in numerical simulation of nonlinear water waves,
Ma, Q. ed., World Scientific Publishing, 2009.

PhD Thesis

Shan Zou, Coastal Sediment Transport Simulation by Smoothed Particle
Hydrodynamics, Johns Hopkins University, 2007.

Crespo, A.J.C., Application of the Smoothed Particle Hydrodynamics model SPHysics
to free-surface hydrodynamics, University of Vigo, 2008

Narayanaswamy, M., A Hybrid Boussinesq SPH Wave Propagation Model with
Applications to Forced Waves in Rectangular Tanks, Johns Hopkins University,
2008.

104

