
93

SPHysics GUIDE - Chapter 5.

HOW TO CHANGE SPHysics FOR YOUR APPLICATION

Introduction

When people start using the SPHysics code, we often get asked if the code can do a

particular function that is not included in the demonstration cases. The answer we give

is normally yes, but the particular functionality required may require some re-coding.

We do not normally propose to do this re-coding ourselves unless the application area

coincides closely with our own area and current projects, or there is a bug. The reason

behind this is that SPHysics is primarily a research code and we have released what we

have found useful for our own research. As the code is research oriented, it is up to the

user to adapt the code and the subroutines to their satisfaction.

This short section is aimed at helping those people who want to change the code for

their own purposes. Figure 5.1 displays the main structure of the code. Here, we list

which subroutines in the code you should examine for possible modification.

Important Note: if you create any new subroutines for the main source code, you must

include the names of these new files in the “make files” used for compiling the code

which are written in subroutines tocompile_win_ifort, tocompile_ftn95,

tocompile_gfortran, tocompile_ifort in SPHYSICSgen_2D/3D.f. Read

Section 3.2.2.3 to see where each of the subroutines is compiled.

1. Changing the motion of moving objects (forced motion)

movingObjects_2D/3D.f controls the calling of movingGate_2D/3D.f,

movingPaddle_2D/3D.f, movingWedge_2D/3D.f and

rigid_body_motion_2D/3D.f. If the motion you desire is not covered by these

subroutines, then you must create your own.

2. Changing the boundary conditions.

Boundary conditions are treated in each celij & self subroutines. Any

modification to the boundary conditions should be done in these subroutines.

3. Changing the timestepping algorithm

The timestepping is performed in all of the step subroutines:

step_predictor_corrector_2D/3D.f, step_verlet_2D/3D.f,

step_symplectic_ 2D/3D.f, step_Beeman_2D/3D.f. These subroutines

then call subroutines ac which control the sweep across the particles (or 2h grid) for

each (part of the) timestep.

4. Changing the kernel calculation

The smoothing kernel and its derivatives are calculated in the kernel subroutines:

kernel_gaussian_2D/3D.f, kernel_quadratic_2D/3D.f,

kernel_cubic_2D/3D.f and kernel_Wendland_2D/3D.f. In version 2.0 of

SPHysics, these can now optionally be corrected for lack of complete support in

subroutine kernel_correction (see Section 1.9).

5. Changing the viscous formulation

The viscous terms are all calculated in the viscosity subroutines which are called

94

from celij & self: viscosity_artificial_2D/3D.f,

viscosity_laminar_2D/3D.f, viscosity_laminar+SPS_2D/3D.f. For

the SPS turbulence model, the shear stresses are zeroed in subroutine ac and then

defined for the next timestep in subroutine correct_SPS_2D/3D.f.

6. Loading in data files and setting useful parameters

If you wish to examine and modify what data SPHysics loads initially, all the useful

data is imported in subroutine getdata_2D/3D.f Furthermore, all the useful

parameters that remain the same throughout the simulation are calculated here such

as the kernel normalization factors, etc. All global variables are stored in the

common blocks contained in common.2D/3D.

7. Zeroing variables

Many variables that are evaluated throughout the timestep, such as the accelerations,

ax, ay, az are zeroed initially in the different ac subroutines: ac_2D/3D.f,

ac_Conservative_2D/3D.f, ac_Shepard_2D/3D.f, ac_MLS_2D/3D.f,

ac_KGC_2D/3D.f, ac_KC_2D/3D.f .

8. Changing the input geometry

At present, SPHysics is limited to generating a few simple geometric structures both

in 2-D and 3-D such as boxes, planar beaches, triangular moving wedges, square

floating objects. Generating the geometry is controlled by the code

SPHYSICSgen_2D/3D.f. As explained in Section 3.2, the input case files can be

used to generate a mixture of these basic options. If you wish to modify or add new

options, you will need to edit and modify SPHYSICSgen_2D/3D.f. Here, we try

to give you some indications which subroutines to change:

(i) main geometric container shape: box, beach

(ii) static obstacles: trapezoid, wall, obstacles

(iii) filling the particles: fill_part (& maybe fluid_particles)

(iv) forced motion objects: gate, wavemaker,

RaichlenWedge_Particles, fill_part

(v) free-motion objects (floating): FloatingBody_Particles, fill_part

As described in Section 4.10, a complex geometry generator is now provided for 3-D

applications (see http://wiki.manchester.ac.uk/sphysics/index.php/Contributors) making

the creation of new geometries and loading in CAD files more accessible.

95

SPHYSICS

getdata

step

check_limits

divide (place particles in 2h boxes)

ac

celij

self

LOOP
Over 2h
boxes

Time
step
LOOP

Repeat for each time-stepping scheme and for
each filter (density, kernel correction)

equation_of_state

poute (data output)

ini_divide …

kernel,

viscosity,

gradients_calc,

(monaghanBC)

correct (for gravity,
SPS

τ)

initializations

movingObjects

Particle
interactions

Figure 5.1 Outline of code structure

Here we present a table of the main variables (or those with less than obvious names)

and the counterpart in equations:

SPHysics variable SPH quantity

ax(i), ay(i), az(i)
t

v

t

aa

d

d

d

d
r

=
v

ar(i)
t

a

d

d ρ

aTE(i)
t

e
a

d

d

cbar () 2
baab

ccc +=

96

cs(i) a
c

deltaptb(j,1), deltaptb(j,2)

deltapsb(j,1), deltapsb(j,2)

() bbbbb rrrrt
rrrrr

−−⋅ ++ 11 / & () 11 / −− −−⋅ bbbbb rrrrt
rrrrr

() bbbbb rrrrs
rrrrr

−−⋅ ++ 11 / & () 11 / −− −−⋅ bbbbb rrrrs
rrrrr

(for boundary particles only)

dudx_CSPH(i), dudy_CSPH(i), …
a

a

x

u

∂

∂
,

a

a

y

u

∂

∂
, …

drx, dry, drz ()baab xxx −= , ()baab yyy −= , ()baab zzz −=

duxp, duyp, duzp ()baab uuu −= , ()baab vvv −= , ()baab www −=

frxi, frxj, frzi, frzj
a

ab

x

W

∂

∂
,

b

ba

x

W

∂

∂
,

a

ab

z

W

∂

∂
,

b

ba

z

W

∂

∂

fxbp, fybp, fzbp Boundary forces ()nf zyx fff ,,=

pm(j) b
m

pr(i) 2

a

a
P

ρ

pVol(j)
b

b

b

m
V

ρ
=

p_v 







Π++ ab

b

b

a

a PP
22 ρρ

 or 







+Π++ abab

b

b

a

a Rf
PP

22 ρρ

rhop(i) a
ρ

rhop_sum ∑∑ =
b

abb

b b

b
abb

Wm
m

W
ρ

ρ

rr2
2

ijr

sum_wab ∑
b b

b

ab

m
W

ρ

up(i), vp(i), wp(i) ()
aaaaa

wvuv ,,==
r

v

ux(i), vx(i), wx(i) abba

b ab

Wv
ρ

m
b
r

∑ (XSPH correction)

xnb(j), ynb(j), znb(j) ()
bzyxbb nnnn ,,==

r
n (Boundary normals)

xsb(j), ysb(j), zsb(j) ()
bzyxbb ssss ,,==

r
s (Boundary tangent s)

xtb(j), ytb(j), ztb(j) ()
bzyxbb tttt ,,==

r
t (Boundary tangent t)

xp(i), yp(i), zp(i) ()aaaaa zyxr ,,==
r

r

Wab ()baab rrWW
rr

−=

bigUdot, bigVdot, bigWdot,

 OmegaX/Y/Zdot, bigMass td

d V
, Ω, M (for rigid body dynamics, eq 2.21)

bigU, BigV, bigW, bigOmegaX ()WVUV ,,==
r

V , ()zyx ΩΩΩ= ,,Ω

