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SPHysics GUIDE - Chapter 5.  

HOW TO CHANGE SPHysics FOR YOUR APPLICATION 

 

Introduction 

When people start using the SPHysics code, we often get asked if the code can do a 

particular function that is not included in the demonstration cases.  The answer we give 

is normally yes, but the particular functionality required may require some re-coding.  

We do not normally propose to do this re-coding ourselves unless the application area 

coincides closely with our own area and current projects, or there is a bug.  The reason 

behind this is that SPHysics is primarily a research code and we have released what we 

have found useful for our own research.  As the code is research oriented, it is up to the 

user to adapt the code and the subroutines to their satisfaction. 

 

This short section is aimed at helping those people who want to change the code for 

their own purposes.  Figure 5.1 displays the main structure of the code.  Here, we list 

which subroutines in the code you should examine for possible modification.  

Important Note: if you create any new subroutines for the main source code, you must 

include the names of these new files in the “make files” used for compiling the code 

which are written in subroutines tocompile_win_ifort, tocompile_ftn95, 

tocompile_gfortran, tocompile_ifort in  SPHYSICSgen_2D/3D.f.  Read 

Section 3.2.2.3 to see where each of the subroutines is compiled.   

 

1.  Changing the motion of moving objects (forced motion) 

movingObjects_2D/3D.f controls the calling of movingGate_2D/3D.f, 

movingPaddle_2D/3D.f, movingWedge_2D/3D.f and 

rigid_body_motion_2D/3D.f.  If the motion you desire is not covered by these 

subroutines, then you must create your own. 

2.  Changing the boundary conditions. 

Boundary conditions are treated in each celij & self subroutines.  Any 

modification to the boundary conditions should be done in these subroutines. 

3.  Changing the timestepping algorithm 

The timestepping is performed in all of the step subroutines: 

step_predictor_corrector_2D/3D.f, step_verlet_2D/3D.f, 

step_symplectic_ 2D/3D.f, step_Beeman_2D/3D.f.  These subroutines 

then call subroutines ac which control the sweep across the particles (or 2h grid) for 

each (part of the) timestep. 

4.  Changing the kernel calculation 

The smoothing kernel and its derivatives are calculated in the kernel subroutines:  

kernel_gaussian_2D/3D.f, kernel_quadratic_2D/3D.f, 

kernel_cubic_2D/3D.f and kernel_Wendland_2D/3D.f.  In version 2.0 of 

SPHysics, these can now optionally be corrected for lack of complete support in 

subroutine kernel_correction (see Section 1.9). 

5.  Changing the viscous formulation 

The viscous terms are all calculated in the viscosity subroutines which are called 
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from celij & self:  viscosity_artificial_2D/3D.f, 

viscosity_laminar_2D/3D.f, viscosity_laminar+SPS_2D/3D.f.  For 

the SPS turbulence model, the shear stresses are zeroed in subroutine ac and then 

defined for the next timestep in subroutine correct_SPS_2D/3D.f. 

6.  Loading in data files and setting useful parameters 

If you wish to examine and modify what data SPHysics loads initially, all the useful 

data is imported in subroutine getdata_2D/3D.f   Furthermore, all the useful 

parameters that remain the same throughout the simulation are calculated here such 

as the kernel normalization factors, etc.  All global variables are stored in the 

common blocks contained in common.2D/3D. 

7.  Zeroing variables 

Many variables that are evaluated throughout the timestep, such as the accelerations, 

ax, ay, az are zeroed initially in the different ac subroutines: ac_2D/3D.f, 

ac_Conservative_2D/3D.f, ac_Shepard_2D/3D.f, ac_MLS_2D/3D.f, 

ac_KGC_2D/3D.f, ac_KC_2D/3D.f . 

8.  Changing the input geometry 

At present, SPHysics is limited to generating a few simple geometric structures both 

in 2-D and 3-D such as boxes, planar beaches, triangular moving wedges, square 

floating objects.  Generating the geometry is controlled by the code 

SPHYSICSgen_2D/3D.f.  As explained in Section 3.2, the input case files can be 

used to generate a mixture of these basic options.  If you wish to modify or add new 

options, you will need to edit and modify SPHYSICSgen_2D/3D.f.  Here, we try 

to give you some indications which subroutines to change: 

(i) main geometric container shape: box, beach 

(ii) static obstacles: trapezoid, wall, obstacles 

(iii) filling the particles:  fill_part (& maybe fluid_particles) 

(iv) forced motion objects: gate, wavemaker, 

RaichlenWedge_Particles, fill_part 

(v) free-motion objects (floating): FloatingBody_Particles, fill_part 

 

As described in Section 4.10, a complex geometry generator is now provided for 3-D 

applications (see http://wiki.manchester.ac.uk/sphysics/index.php/Contributors) making 

the creation of new geometries and loading in CAD files more accessible. 
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Figure 5.1  Outline of code structure 

 

Here we present a table of the main variables (or those with less than obvious names) 

and the counterpart in equations: 
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