User Guide for the SPHysics code

p o000
@@ 00000
. 900 (I L e
0000 =
0000
900
9000
900
0000
@O

PHVYSICS

September 2010

M.G. Gesteirarfiggesteira@uvigo.es
B.D. Rogerslfenedict.rogers@manchester.ag.uk

R.A. Dalrymple (ad@jhu.edy
A.J.C. Crespodlexbexe@uvigo.@s

M. Narayanaswamynfuthu@jhu.edy

Acknowledgements

The development and application of SPHysics werggtlg supported by:

Xunta de Galicia under project PGIDITO6PXIB383285PR

Office of Naval Research, Geosciences Program

EPSRC Project Grant GR/S28310

ESPHI (An European Smooth Particle Hydrodynamidsahive) project
supported by the Commission of the European Comtesr(iMarie Curie
Actions, contract number MTKI-CT-2006-042350).

Flood Risk Management Research Consortium (FRMR@se 2, EPSRC
Grant F020511

Research Councils UK (RCUK) Research Fellowship

Abstract

This report documents the computer program SPHykased on
Smoothed Particle Hydrodynamics theory. The docuatem

provides a brief description of the governing emrst and the
different numerical schemes used to solve them. HORN code is

provided for two and three- dimensional versionshef model. Post-
processing tools for MATLAB visualization are algarovided.

Finally, several working examples are documentednable the user
to test the program and verify that it is instaléedrectly.

Contents

1. THEORETICAL BACKGROUND 9
1.1. The SPH method 9
1.2. The weighting function or smoothing kernel 9
1.3. Momentum equation 10

1.3.1. Artificial viscosity 10
1.3.2. Laminar viscosity 11
1.3.3. Laminar viscosity and SPS 11
1.4. Continuity equation 12
1.5. Equation of state 12
1.6. Moving the particles 13
1.7. Thermal energy 13
1.8. Density Reinitialization 13
1.9. Kernel Renormalization 14
1.9.1. Kernel Correction 15
1.9.2. Kernel Gradient Correction 15
1.10. Riemann Solver formulation 16
1.10.1. Definition of the Riemann Problem. 16
1.10.2 Non-conservative Riemann Formulation. 18
1.10.3 Conservative Riemann Formulation. 19
1.10.4 The HLLC Approximate Riemann Solver. 19

1.10.5 Higher-order Reconstruction and MUSCEdshschemes 20

2. IMPLEMENTATION 23
2.1. Time stepping 23
2.1.1. Predictor-Corrector scheme 23
2.1.2. Verlet scheme 24
2.1.3. Symplectic scheme 24
2.1.4. Beeman scheme 24
2.2. Variable time step 25
2.3. Computational efficiency: linked list 25
2.4. Boundary conditions 27
2.4.1. Dynamic Boundary conditions 27
2.4.2. Repulsive Force Boundary Conditions 29
2.4.3. Periodic Open Boundaries 30
2.4.4. Floating Objects 31
2.5. Checking limits 32
2.5.1. Fixing the limits 32
2.5.2. Changing the limits in Z+ 33
2.5.3. Limits in X, Y or Z- directions 33
2.6. Restart runs & checkpointing (repetitive resja 34

3. USER’S MANUAL
3.1. Installation
3.2. Program outline
3.2.1. SPHysicsgen
3.2.1.1. Creating compiling options
3.2.1.2. Input files
3.2.1.3. Output files
3.2.1.4. Subroutines
3.2.2. SPHysics
3.2.2.1. Input files
3.2.2.2. Output files
3.2.2.3. Subroutines

4. TEST CASES
4.1. Running the model
4.1.1. Compiling and executing on Linux and Mac OS
4.1.2. Compiling and executing on Windows
4.2. Test case 1: 2D Dam break in a box

4.3. Test case 2: 2D Dam break evolution over abogbm in a box.

4.4. Test case 3: Waves generated by a paddlbeach
4.4.1. Case 2D
4.4.2. Case 3D
4.5. Test case 4: Tsunami generated by a slidindg&/e
4.5.1. Case 2D
4.5.2. Case 3D
4.6. Test case 5: 3D dam-break interaction wittriectire
4.7. Test case 6: Floating bodies in waves
4.7.1. Case 2D
4.7.2. Case 3D
4.8. Test case 7: Focused wave group approactapgzoid
4.8.1. Case 2D
4.8.2. Case 3D
4.9. Test case 8: Floating bodies with 2D Peridglici
4.10 Test case 9: Blender case

5. HOW TO CHANGE SPHysics FOR YOUR APPLICATION
6. VISUALIZATION

7. REFERENCES

8. APPENDIX: SPS Turbulence Model

9. PUBLICATIONS USING SPHysics CODE

35
35
35
37
37
38
38
45
47
47
47
49

53
53
53
55
57
60
63
63
66
68
68
71
73
77
77
81
84
84
87
89
92

93

97

97

101

104

1. THEORY

1.1. The SPH method

The main features of the SPH method, which is basedntegral interpolants, are
described in detail in the following papers (Monaghl1982; Monaghan, 1992; Benz,
1990; Liu, 2003; Monaghan, 2005). Herein we willyorefer to the representation of
the constitutive equations in SPH notation. In SEt¢ fundamental principle is to
approximate any functio A(r) by

Ar) = [A(F)W(r =, h)dr’ (1.1)

whereh is called the smoothing length aW(F =".h) is the weighting function or
kernel. This approximation, in discrete notatiaads to the following approximation of
the function at a particle (interpolation poiaf)
A=Y m 2w,
b pb
where the summation is over all the particles wittiie region of compact support of
the kernel function., The mass and density are t@einbym, and g, respectively and

(1.2)

W,, =W(r, —1,.h) is the weight function or kernel.

1.2. The weighting function or smoothing kernel

The performance of an SPH model is critically defget on the choice of the
weighting functions. They should satisfy severalditons such as positivity, compact
support, and normalization. Also\,;, must be monotonically decreasing with
increasing distance from particieand behave like a delta function as the smoothing
length, h, tends to zero (Monaghan, 1992; Benz, 1990; LO@Q32. Kernels depend on
the smoothing length, and the non-dimensional distance between pastmgilen byg

=r / h, r beingthe distance between particlasandb. The parameteh, often called
influence domain or smoothing domain, controls stz of the area around partice
where contribution from the rest of the particlasmot be neglected.

In SPHysics, the user can choose from one of tilewmg four different kernel
definitions:

1) Gaussian:
W(r,h) = a, exp(— qz) (1.3)

whereap is Y(71%) in 2D and (77¥*h®) in 3D

2) Quadratic:

3 3 .3
W(r,h)=a,|-—q*->q+> 0<g<2 1.4
(r.h) DL6q 4 4} q (1.4)
whereap is 2/(7h?) in 2D and5/(47h*)in 3D
3) Cubic spline:
3, 33
1--qg°+— 0<g=<1
2q 4q q
W(r,h)=a, j{(z—q)3 1<q<?2 (1.5)
0 g=2
whereap is 10/(%h?) in 2D and 1/4h°) in 3D.
4) Quintic (Wendland, 1995):
4
w(r,h)=a, (1—2) (29+1) 0=gs2 (1.6)

whereap is 7/(4th?) in 2D and 21/16h°) in 3D.

The tensile correction (Monaghan, 2000) is autoradlyi activated when using kernels
with first derivatives that go to zero with decriegsinter-particle spacing.

1.3. Momentum equation

The momentum conservation equation in a continuehd s
A g+0
Dt P
where © refers to the diffusion terms.
Different approaches, based on various existingnédations of the diffusive terms, can
be considered in the SPH method to describe theantum equationThree different
options for diffusion can be used in SPHysics: djificial viscosity, (ii) laminar
viscosity and (iii) full viscosity (laminar viscdg# Sub-Particle Scale (SPS)
Turbulence):

(1.7)

1.3.1. Artificial viscosity

The artificial viscosity proposed by Monaghan (1pBas been used very often due to
its simplicity. In SPH notation, Eq. 1.7 can bettemn as

(1.8)
dva = _Zrno(sz + ia; + I_Iabjljavvab + g
dt b pb pa

10

whered = (0, 0, -9.81) méis the gravitational acceleration.
The pressure gradient term in symmetrical formrx@essed in SPH notation as

(—lmpj ==> mb(Pg + PZ‘JDaWab
p a b Py Pa

with Py and g, are the pressure and density corresponding tacfegkt{evaluated aa or
b).
Iap is the viscosity term:

(1.9)

— 0 C.] 1.10
a&buab vab rab < 0 ()
N ab ~ Pap
0 v, r,>0
T . . L
with Ha =5 5 - whereFa = Fa =Ty, Voo =V, =V, being 'k and Vkthe position and

rab +/7

Ca

— c
the velocity corresponding to partidiga or b); Ca, = > 7= 0.01, a is a free

2
parameter that can be changed according to eabkepro

1.3.2. Laminar viscosity

The momentum conservation equation with laminacods stresses is given by

1.11
E=—EDP+g+uOD2v (1.11)
Dt Yo,
where the laminar stress term simplifies(Lo anddS202) to:
1.12)
4o xr [0 W (
(UODZV)a — zmb U olap—a at; b
b (pa +pb)‘rab‘
where is the kinetic viscosity of laminar flov10°m?/s),
So, in SPH notation, Eq. 1.11 can be written as:
1.13)
v P P 4o 1. 00 W (
av, =—Zmb(g+gjﬁawab+g+2mb R) 2 WV
dt 5 “\pp p 5 (Pa*Po) Ty

1.3.3. Laminar viscosity and Sub-Particle ScaleS)SRurbulence

The Sub-Particle Scale (SPS) approach to modelirmulence was first described by
Gotoh et al (2001) to represent the effects of turbulencehieir MPS model. See
Appendix for a brief description of the theory oérge-Eddy Simulation (LES) and
Sub-Grid Scale (SGS) models. The momentum consemequation is,
DY lopyguoovetor
bt »p p

(1.14)

where the laminar term can be treated following Efj2 ancr represents the SPS
stress tensor.

11

The eddy viscosity assumption (Boussinesq’s hymmhes often used to model the
SPS stress tensor using Favre-averaging (for a mmsiple fluid):

i=Vt(23j‘§k5uj‘§C|A25u where 7j is the sub-particle stress tensor,
p

A :[(CSAI)]2|S| the turbulence eddy viscositg,the SPS turbulence kinetic energy,
the Smagorinsky constant (0.1Z), = 0.0066,Al the particle-particle spacing and

1S =(25S,)?, S the element of SPS strain tensor.
So, foIIowmg (Dalrymple & Rogers, 2006), Efl4 can be written in SPH notation as

=—Z [b+ a]DW +g
b p

a

£, 4v0rabGaWabz _— (1.15)
b (pa+pb)‘r;1b‘

+Zm(b me

2
b pa

1.4. Continuity equation

Changes in the fluid density are calculated in SSt¢$yusing

1.16
pa = zmbv IjaWab ()

instead of using a Welghted summation of mass tMwnaghan, 1992), since it is
known to result in an artificial density decreasamfluid interfaces.

1.5. Equation of state

The fluid in the SPH formalism is treated as weakdynpressible. This facilitates the
use of an equation of state to determine fluid sares which is much faster than
solving an equation such as the Poisson’s equatitowever, the compressibility is
adjusted to slow the speed of sound so that the si@p in the model (using a Courant
condition based the speed of sound) is reasonalh@ther limitation on the
compressibility is imposed by the fact that thermbspeed should be about ten times
faster than the maximum fluid velocity, thereby pieg density variations to within less
than 1%.

Following (Monagharet al, 1999; Batchelor, 1974), the relationship betwe®ssure
and density is assumed to follow the expression

12

)

wherey = 7 andB = ¢ 0o/¥ beingm, = 1000 kg it the reference density and
C, =¢(p,) =+ (aPlap)‘po the speed of sound at the reference density.

1.6. Moving the particles

Particles are moved using the XSPH variant (Monagh@89)

1.18
?;t =V, +szivbaw (1.18)

pab

where&=0.5 andPa =(Pa + £,)/2. This method moves particle with a velocity that is
close to the average velocity in its neighborhood.

1.7. Thermal energy
The thermal energy associated to each particlal@ilated using the expression given

by Monaghan (1994)
(1.19)

72 (St Pb +Lpaij ljaWab
28

where Warefers to viscosity terms, which can be calculatesing the different
approaches mentioned above.

1.8 Density Reinitialization

While the dynamics from SPH simulations are geheraialistic, the pressure field of
the particles exhibits large pressure oscillatidforts to overcome this problem have
concentrated on several approaches including dorgethe kernel (for an overview see
Bonet & Lok, 1999) and developing an incompresssialver. One of the most straight
forward and computationally least expensive is édgrm a filter over the density of
the particles and the re-assign a density to eadicle (Colagrossi and Landrini, 2003).
There are two orders of correction, zeroth orderfast order.

Zeroth Order — Shepard Filter
The Shepard filter is a quick and simple correctionthe density field, and the
following procedure is applied every 30 time steps

ZprT/ab Z mw, (1.20)

13

where the kernel has been corrected using a zerd#r-correction:

W b - VYab
Zwabﬂ (1.212)
b pb

al

First Order — Moving Least Squares (MLS)
The Moving Least Squares (MLS) approach was deeeldqy Dilts (1999) and applied
successfully by Colagrossi and Landrini (2003) BgpdPanizzo (2004). This is a first-
order correction so that the linear variation oe tbensity field can be exactly
reproduced:
P = X P = 3 (122)
b b

b

The corrected kernel is evaluated as follows:

V\/a’\k/)”-S :WbMLS (ra) = IB(ra) [qra - IVb) Wab (123)
so that in 2-D
Wa'\l;ILS = [IBO (ra) + ﬁlx (ra)(Xa - Xb) + 1812 (ra)(Za - Zb)]\Nab (124)
where the correction vectgris given by
B 1
Alr.)=| B |=A™ 0|, where A=3W|(r)AY, (1.25)
B 0 i
with the matrixA being given by
_ 1 (Xa_xb) (Za_zb)
A=l -%) (-%) (2-2)x-x) (1.26)

(Za - Zb) (Xa - Xb)(za - Zb) (Za - Zb)2
Similar to the Shepard filter this is applied eve§ time steps or similar. The
equations are similar in 3-D but just include yheirection.

1.9 Kernel Renormalization
A periodic correction of the kernel functioW,, is necessary in SPH hydraulics
computations, where a finite domain and a free asarfare often part of the

computational domain. Particles near boundariesher free surface have a kernel
smoothing function truncated due to the absencenafjhboring particles. The

14

conditions of consistency and normalization faibwéver it is still possible to handle
these situations by opportunely correcting the &efunctionW,;, itself or its gradient.

In SPHysics, there are two techniques to avoidreri@m a corrupted interpolating
function:

1.9.1 Kernel correction.

The method was proposed by Bonet and Lok (1999) iarah alternative form, by Liu
et al., (1997). The kernel is modified to ensurat tholynomial functions are exactly
interpolated up to a given degree. In spite offtfs¢-order correction (linear correction)
is described in detail in Bonet and Lok (1999), shene authors consider that the linear
correction is unsuitable for computational purpodésey also propose using constant,

rather than linear, correction. So, a vectorialatale (f,) can be expressed as

mb —
Z* fo\Wap (1.27)

=

a ran
Zpb

1.9.2 Kernel gradient correction.

The corrected kernel gradiémtV,, should be used to calculate the forces in the
equation of motion instead of the normal kernetligrat UW,, , being
Ow,, = C,0W,, (1.28)
L, =M (1.29)
zm DWabD(x X,) (1.30)

b

wherenumis the number of particles interacting with pdeti.
Considering, for the sake of clarity, a 2D mediuhe diagonal elements of Jvare
defined positive since

OW,, d—Wi(x -%,) (1.31)
dr r,
with r,, =%, - %,| resulting in
um i dW 1 (1.32)
M,(11)= [2”‘° p —xb)ZJ
rry,
with dW/dr <0.
The same can be proved for
num (1.33)
Ma(2,2)=(- m"dW1(Za-Zb)2j
o1 pp drory

15

On the other hand\l , is symmetric since

num dW 1
M,(L.2)=M,(2,1)= —(T OV 2 (4, %)@, - zb)j
b1 pp N Ty

Note that matrixM and its inverse_ are equal to the identity matrix when the particle
a is placed far from the boundaries or the freefamer. In this case, there is no real
correction on the kernel gradient (on the forcegvéttheless, when the particdeis
placed near the boundaries or the free surfacediitebution of particles around it is
not symmetric anymore. Thus, bolh and L are different from the identity matrix and
the kernel gradient is corrected following

ow, | [L(1,1) L(1.2)]0wW,

Aw, | |L@21) L(2,2)] 0w, (1.35)
where the subscriptsandz represent the spatial coordinates . Note thatdheection
is anisotropic since the termg(1,2) and 1(2,1) involve both spatial coordinates.

(1.34)

1.10. Riemann Solver formulation

This section aims to introduce only the basic cptedehind including Riemann
solvers into SPH. For a full presentation of theary underpinning Riemann solvers,
MUSCL upwinding and higher-order accurate scherttes,reader is referred to texts
such as Toro (2001), etc. The main advantagetfdacing Riemann solvers into SPH
Is that the pressure and velocity fluctuations gnésn so many of the SPH schemes for
water are removed (e.g. Rogetsal, 2009).

1.10.1 Definition of the Riemann Problem.

The Riemann problem is defined as a discontinoiiaied at locatior, in space:

[fL o x<=x
on_{% .. (1.36)

where the subscripts and R denote left and right states respectively. Fangxle,
consider the simple case of the simple densityoditicuity below:

A

PL

PR

16

Figure 1.1 - Initial discontinuity in density

When this initial condition is evolved in time, Aogk wave propagates to the right
while a rarefaction wave propagates to the leftramvn in Figure 1.2a below. This can
be depicted in ax-t diagram which displays the shock propagating ®right as a
single line and the rarefaction wave spreadingtouhe right separating the left and
right regions. The region between the left andhtrigggions is normally referred to as
the star region.

PL

Rarefaction
wave Shock
wave

PR
T >
Xo X
(a) Propagation of initial discontinuity at tinhe t;
Rarefaction At Shock
wave wave

ol 4

Xo
(b) x-t diagram
Figure 1.2 — Evolution of discontinuity in density

The solution to the Riemann problem is therefoee dbfined as all the states from the
left to right regions. Numerous solvers have sibeen proposed to solve for the
variables within the star region along with the esfge of the shock and rarefaction
waves. If the problem is one dimensional (or rdaleco 1-D), it is possible to use an
exact Riemann solver, however, this is computatiprexpensive and so is generally
avoided. To circumvent this, a range of approxemRiemann solvers have been
proposed including the Osher, Random choice, Rokel.G;1 WAF approximate
Riemann solvers (see Toro 2001). The problem ban be solved in terms of the
primitive variables 4, u, v, w, €] (herein referred to as non-conservative), or the
conserved variableg,[pu, pv, pw, E].

17

In SPHysics we have implemented both primitive andservative variable Riemann
solvers.

1.10.2 Non-conservative Riemann Formulation.

In this formulation first proposed by Parshikeval (1999 & 2001) and later by Cha
and Whitworth (2003) as Godunov Particle Hydrodyitan{GPH), the main change
takes place with the pressure gradient term witlhenmomentum equation. The reader
is referred to these papers for a more detailedrgid®n. Essentially, the sum of the
left and right pressures is replaced by the pressmithin the star region, i.e.

P.+P) - 2P, . Hence the pressure gradient in the momentumtiequis changed
a b ab

from:
Vao_ —= P oW, (1.37)
dt b ™ j P5 '
to:
dv, 1 1
==-> m2P,| =+ |OW,, (1.38)
dt b pa b

Alternatively, we can change the variationally detent form (Vila, 1999; Bonet and
Lok 1999; Colagrosset al. 2003)

dv 2P,
Va —_ O.W,, to a=-m —20W, 1.39)
[PaPo] dt Zb: PaPo i (

A similar operatlon concerns the velocities resdleato the line joining two particle

centres(Uf +UbR) ~ 2U,, . Parshikowet al defineU® =u Eﬁrﬁj so that the continuity

r.ba
equation changes from

dpa—Zrm(u ~u,) OW,, (1.40)
to:
dp =P - ZZmo(Uy =U,) O W (1.41)

The |ntermed|ate star values are approximatedalhjitusing an acoustic-based solver.
Denoting the values on the particlasand b as the left and right statek, and R,
respectively, the star regions are approximated as:

paCaUl;q +prbU§ + Pa _ Pb

U, = (1.42a)
° Ioaca + Iobcb
_ R_y|R
Pa*b - ,OaCan +prbPa PLaLr% (Ub Ua) (1_42b)
paca +pbcb

Hence, the SPH equations become:

18

d .
% = _2; rno(uab _ua)DaWab (1433)

dv 2P,
&=->» m—=0W, +g+viscouderms 1.43b
dt z papb ()
2Pb *
- 2 \Ugp — U, JUW, 1.43c
=Em o, -u O (1.43¢)

1.10.3 Conservative Riemann Formulation.

In this formulation, we use the work of Vila (199@hereby the conventional SPH
formulation is replaced by one that solves a Riemaroblem between each particle
pair with the equations expressed in terms of treserved variables[pu, pv, pw, E].
The inviscid Navier-Stokes equations are solvethabno viscous terms are required to
keep the scheme stable in contrast to our prev&ils schemes. We have chosen this
formulation since the pressure fields and wave @agagon are more accurate than the
previous formulations used by the present authdedrymple and Rogers, 2006). An
accurate wave profile and pressure field are eisdefor predicting the forces on
objects. More information on this formulation damfound in the papers of Vila (1999)
and Guilcheret al (2007). The governing equations when expressesPiH form are
given as:

dd)f[a =v(x,,t) (1.44a)
day _ o, (1.44b)
)+ 2 420,V o=V (1) W, =0 (L.440)
%(wapavaﬁ waé%Z[pA + DAV gy 0 (Voo =2 (. t))] DML, = a0, (1.44d)

where subscripf denotes the result from the approximate Riemahresasuperscript

0 denotes the field value (i.e. the value at thigde itself), w, is the volume of particle
a. This Riemann problem is solved using an HLLCragpnate Riemann solver using
MUSCL-based upwinding (Toro, 2001j, is the vector of external forces, for example,
gravity.

1.10.4 The HLLC Approximate Riemann Solver.

The HLLC Riemann solver used in SPHysics provideg@proximate solution fdstar
Regionwhere the contact surface is reinstated (Tedral 1994). Now in the addition
to the left and right going waves, there is a congarface within théStar Regionso
that we also havstar left and right regionsl* and "R as shown in Figure 1.3. As we
are solving compressible flow equations where aamtrdiscontinuity might exist, it is
important, therefore, to use a solver that capttinsseffect.

19

Star(*)
region

L
PR

Xo
Figure 1.2 - Wave solution for HLLC Riemann solvexr-t diagram

Defining Q = [p, pu, pv, pw, E], and the wave speeds in the Left, Star and Regjibns

asS, S andSrespectively, the solution to this is given as:
Q. |f x/t<S

Q.. if § =x/t<S

Qe = Qn if S<x/tsS, (1.45)
Qp if Sysx/t
where
] . _
S
Q. =p, [M Vi . (1.46)
S W
Solsmuls

with the subscripK denoting left K=L) or right K=R), respectively. The wave speeds
are defined as follows:

SL=uU —C0, S=U, S3=Ug*Crlk, (1.47)
where for Tait's or Morris’ equations of state
1 if p<pg

(1.48)

= [‘(—f(;]tp)} if p. > py

1.10.5 Higher-order Reconstruction and MUSCL-dasghemes.

It is well known in finite volume Godunov-type selg that the first-order schemes are
dissipative. However, attempting to obtain a hrghreler scheme just using simple
extrapolation leads to unphysical oscillation ire tholution since this can lead to
overestimation of the variables between each coatipat point. Using an approach
similar to Monotone Upwind-centred Scheme for Covestion Laws (MUSCL) allows
us to extrapolate the data to be second orderaocesp

20

In SPHysics, this Riemann problem is solved usingHdLC approximate Riemann
solver using MUSCL-based upwinding Toro (2001) wathlgenerals-limiter (Hirsch,
1998). For an arbitrary functio@ between two particlea andb, we construct the
Riemann problem left and right states either sidthe midpoint using the gradient of
the constructed variable. Defining the gradiemtstraucted variable differences as

Ag, =0¢, 51y,

Ag =0¢Gr,’ (1.49)
the left and right Riemann states either side efitiidpoint are then defined by

% =p+hg

A=q-Dg (1.50)

whereAg, andAg, are given by

_ {ma>{0,min(,8A¢a,A¢z,),min(A%,ﬁA%)] it Ag >0 (1.51)

Ag,, 0@, = .
a2 min[0,max(BAg,, Ag), maxAg,, BAg)] if Ag <0

If either Ag, or Ag, is found to have a value greater thﬁm}a —¢g|, then Ag, and
Ag, are further limited to§|¢)a —¢g|. This is done to ensure that the valuesggofand

o always lie between the values @f and ¢ . The left and right states are used as the

discontinuous states for the individual Riemanrbfam between particlesandb. For

a full description an understanding of Riemann exdythe reader is referred to Toro
(2001). As is well known for Riemann solvers amghlkr-order schemes, the choice of
limiters can be sensitive.

21

22

2. IMPLEMENTATION

2.1. Time stepping

Four numerical schemes are implemented in SPHygixshe Predictor-Corrector
algorithm described by Monaghan (1989); (ii) thelgtealgorithm (Verlet, 1967); (iii)

the Symplectic algorithm (Leimkhuler, 1997) and) (Beeman algorithm (Beeman,
1976).

Consider the momentum (1.7), density (1.16), pmsit{{1.18) and density of energy
(1.19) equations in the following form

2.1
W, _p (2.1a)
di

2.1

9. _p (2.10)

dit

2.1
ar, _y (2.1c)
dit

e, g (2.1d)
dit

where Va represents the velocity contribution from partieleand from neighboring
particles (XSPH correction).

2.1.1. Predictor-Corrector scheme

This scheme predicts the evolution in time as,

n+1/2

n+l/2 _
Va

=+ LR o2 = ol e D]

(2.2)
ran+1/2 - ran +%\7an; 62+1/2 - 62 +% EQ
. 1/2 _ 1/2 .
calculatingPs = f(02""°) according to Eq. 1.17.
These values are then corrected using forces dualhstep
12 _ At o niy2 2 _ At /
VIR el e IR e = pp e o 23
F2 2 +%\7an+1/2; el/2 = gn +% N+
Finally, the values are calculated at the end eftitne step following:
1 1/2 1 1/2
vt =20 =] ol =207 = o)
n (2.4)

rn+1 - Zran+1/2 _ rn_ en+1 - 232+1/2 -e

a a, ~a a

Finally, the pressure is calculated from densiipg P = f(02™)

23

2.1.2. Verlet scheme

This time stepping algorithm, to discretize Equasi@.1a-d, is split into two parts:
In general, variables are calculated according to
vt = v 4 208F,) ottt = pi ™t + 2D
"™ =r) + AtV + 05At2F): el™ =el™ + 2AtE]
Once every M time steps (M on the order of 50 tsteps), variables are calculated
according to

(2.5)

vt =vl + AR pit = pl + AD;

2 -

= AV, + 05A°F,; e =€l + AtE]

a

(2.6)

This is to stop the time integration diverging ginkhe equations are no longer coupled.
2.1.3. Symplectic scheme

Symplectic time integration algorithms are timeamsible in the absence of friction or
viscous effects (Leimkhuler 1997) and hence reptesevery attractive option for
meshless particle schemes. In this case, firsty#tues of density and acceleration are

calculated at the middle of the time step as:
1

n+= n+§dpa

2 =
R T o
2 At dr!] '
ra2:r2+_;a,
B -2 dt

1
where the superscript denotes time step and= nAt . Pressure,p;1 2, is calculated

1
using the equation of state. In the second stt(gﬁe,oi _/i) 2/dt gives the velocity and

hence position of particles at the end of the tatep

1
(@00, = (0w,) LAt dlw,o,v,)"2

2 dt ’ 2.8)

1
ntl _ 5 JA
“ha itV

At the end of the timesteg o/ /dt is calculated using the updated values_/gif and

r™™ (Monaghan 2005).
2.1.4. Beeman scheme

Beeman algorithm uses a Beeman predictor step anddams-Bashforth-Moulton
corrector step. This method is accurat®{at®).

The predictor step is fulfilled using Beeman'’s noetlas Caponet al. 2007:

24

V"2 = y" + LEAE - 05AFE ™
(2.9)
P72 = p" + 1EAID! - O5AD™
“+}/ — N n 2 n _ 2= n-1
72 =t ANV + 2 ACF] - L ACF]
&2 = & + 15AtE" - O5ALE™

calculatingPr™* = f(0;™?)

The corrector step is given by

n+l _gn 4, § n+ ¥ 8 n_ n-1
vt =l 4 O AR + 8 AR - 1A 2.10)
prt = pp+ 5/ AD] 2 + 8/ ADY - 1 MDY
N+l _ .n n 2 ”+}/ 2FEn
= AN + LACE2 + 1 ACE,]

nl _ n 4 5§ ”+}é 8 no_ n-1
e =el + 5 ,AE2 + 8 AED - 1 AtE]
n+l
)

Finally, the pressure is calculated from densiipg Px = f (05

2.2. Variable time step

Time-step control is dependant on the CFL condjtibe forcing terms and the viscous

diffusion term (Monaghan; 1989). A variable times & is calculated according to
Monaghan and Kos (1999):

. h

. At,, =
At = 03[min(At, At,,) . Aty = min(, /1 fa\); > ma'nc +ma%hvabrab
: I

(2.11)

Here &t; is based on the force per unit miigsand &t., combines the Courant and the
viscous time-step controls.

2.3 Computational efficiency: link list.

In the code the computational domain is dividedguare cells of sideh(see Figure
2.1). following Monaghan and Latanzio (1985). Thies,a particle located inside a cell,
only the interactions with the particles of neighbg cells need to be considered. In
this way the number of calculations per time steg, saherefore, the computational time
diminish considerably, froi? operations tiN logN, N being the number of particles.

25

Figure 2.1: Set of neighboring particles in 2D. The possitgghbors of a fluid particle
are in the adjacent cells but this only interaath warticles marked by black dots.

The SPHysics code in 2D sweeps through the gridgatbex-direction, for eacte-
level. Around each cell, the E, N, NW & NE neighbog cells are checked to
minimise repeating the particle interactions. THas example, when the centre cell is
i=5 andk=3 (see scheme in Figure 2.2), the target cell{s=#, (4,4), (6,4) and (6,3).
The rest of the cells were previously considerebuph the sweeping (e.g. the
interaction between cell (5,3) and (5,2) was prasip accounted when (5,2) was
considered to be the centre cell).

o © o) ® e o
(@] (@]
° o Q o (@) 10) 1o} o °
°l e e |NW|N |NE | @) e
(@) (@) 1o}
@
nczcells o . o
o| © ° ik |E e
o) [©) [©) o [©)
(@] o
o o o | o . °l. o
© (@] ® ® (@] (e]
(@]
e © ol © e
©) 6}
(@) 1o} (@) Q ® o (@) 1o}

ncxcells

Figure 2.2: Sweeping through grid cells in 2D. Starting frone tlower left corner,
particles inside the center célinteract with adjacent cells only in E, N, NW aN&
directions. The interactions with the rest of tledlscW, S, SW & SE directions were
previously computed using reverse interactions.

26

A similar protocol is used in 3D calculations (Fig2.3).

Layern+1 Ne—

z Layern
Y
NI
Figure 2.3: Sweeping through grid cells in 3D. Only 13 out 6fssible neighboring

cells are considered when centered on a partigiklazell. The rest were previously
considered when centered on adjacent cells usugyge interactions.

Two link lists are considered in SPHysics. Thetfose tracks the boundary patrticles
and it is partially upgraded every time step. Tiasdue to the fact that the only
boundary patrticles that change their position nimetiare the ones that describe moving
objects such as gates and wavemakers. The secokdidt corresponds to fluid
particles and is completely updated every time.step

2.4. Boundary conditions

Three boundary conditions have been implement&Pidysics: (i) Dynamic Boundary
conditions (Crespo et al, 2007; Dalrymple and Kr#600); (ii) Repulsive boundary
conditions (Monaghan & Kos, 1999; Rogers & Dalrym@D08) and (iii) Periodic open
boundary conditions:

2.4.1. Dynamic Boundary conditions

In this method, boundary particles are forced tisSathe same equations as fluid
particles. Thus, they follow the momentum equatigg. 1.7), the continuity equation
(Eq. 1.16), the equation of state (Eq. 1.17), amel énergy equation (Eq. 1.19).
However, they do not move according to Eq. 1.1&yTtemain fixed in position (fixed
boundaries) or move according to some externallyosed function (moving objects
like gates, wavemakers ...).

Boundary particles are organized in a staggerechargisee Fig. 2.4):

27

Figure 2.4: 2D sketch of the interaction between a fluid géet{empty circle) and a set

of boundary particles (full circles). The boundargrticles are placed in a staggered
manner.

When a fluid particle approaches a boundary thesitlerof the boundary particles
increases according to Eq. 1.16 resulting in asuresincrease following Eqg. 1.17.

Thus, the force exerted on the fluid particle iases due to the pressure te(P/,Oz)

in momentum equation (see Eq. 1.8, 1.13 or 1.1hjs mechanism is depicted in a
simple example where a fluid particle approaches libttom of the tank. When the
distance between the boundary particle and thd fharticle becomes smaller thah, 2
the density, pressure and force exerted on themimgpparticle increase generating the
repulsion mechanism (see Fig. 2.5). The normalizegbressure

term NPT, = (P/pz)z/(P/PZ)R, is represented in Fig. 5¢, whezreefers to the distance
from the incoming fluid particle to the wall arRithe minimum distance to the wall
attained by the incoming particle. The wall is casgd of boundary particles.

1300

1200+

1100

Density (kg/m 3)

1000

0.8 1 1.2 1.4 1.6 1.8 2
x 10" Position/h
4 T T - .

Pressure (N/m2)
N

0.8 1 1.2 1.4 1.6 1.8 2
Position/h

NPT
o
o

0.8 1 1.2 1.4 1.6 1.8 2
Position/h

Figure 2.5: Variation of density (a), pressure (b) and norgeaipressure term (c) for a
moving particle approaching a solid boundary. Claktons were run without viscosity.

28

2.4.2. Repulsive boundary conditions.

This boundary condition was developed by Monagh#i94) to ensure that a water
particle can never cross a solid boundary. In taise, analogous to inter-molecular
forces, the particles that constitute the boundeaxgrt central forces on the fluid
particles. Thus, for a boundary particle and adflparticle separated a distancéhe
force for unit of mass has the form given by th@nard-Jones potential. In a similar
way, other authors (Peskin, 1977) express thiefassuming the existence of forces in
the boundaries, which can be described by a dettetibn. This method was refined in
Monaghan and Kos (1999) by means of an interpolgtiocess, minimizing the inter-
spacing effect of the boundary particles on theillsapn force of the wall.

Following this approach, the force experienced hyater particle ', acting normal to
the wall, is given by (Rogers & Dalrymple 2008)

f = RW)P(&)e(z up) (2.12)
where" is the normal of the solid wall. The distancés the perpendicular distance of
the particle from the wall, whilé is the projection of interpolation locati@n onto the

chord joining the two adjacent boundary particlad Uzis the velocity of the water
particle projected onto the normal.. The repuldiamction, R(y), is evaluated in terms

of the normalized distance from the w.d =¢/2h , as

1
Ry)=A-—~—(1-q) 213
/q (2.13)
where the coefficiem is
= % 001c? (2.14)

¢ being the speed of sound corresponding to paiticle
The functionP(f) is chosen so that a water particle experiencesnatant repulsive

force as it travels parallel to the wall

P(&)= ;(1+ co{Z”ED (2.15)

Ab
where Ab is the distance between any two adjacent boungariicles. Finally, the

function 5(Z~Uu) is a modification to Monaghan and Kos’s originabgestion and
adjusts the magnitude of the force according tddbal water depth and velocity of the
water particle normal to the boundary

e(zu)=e(2)+&(u,) (2.16)
where
002 z>0
g(z)=1|7/h|+ 002 0>zz-h (2.17)
1 |7/h,|>1
and

29

0 u, >0
glug)=1l20us|/c, [20u | <c, (2.18)
1 20u,| > c,
In Equations 2.12-2.14z is the elevation above the local still-water levg]|
uD:(vWP_vBP)m, where the subscripts WP and BP refer to water landndary
particles respectively, arC =+/BV/0, the speed of sound at the reference density.
The system of normals requires each boundary pa(8#) to know the coordinates of

its adjacent BPs. In a two-dimensional situatisrslaown in Figure 2.6a, the boundary
particlei is surrounded by BPis1 andi+1 so that the tangential vector is given by
t=(fa-ria)ifa-ral so that the normal is then found froM =0, The three-
dimensional situation is shown in Figure 2.6b whHgRa also has adjacent neighbgrs
1 andj+1. The coordinates of these adjacent BPs arareehto calculate the tangents

, 57 (Fa=ria)irin ~rja andn=txs,

and normal T = (e ﬁ—l)/\rm —fia

Figure 2.6: Location of adjacent boundary particléa) 2-D boundary particles and
adjacent neighbors; (b) 3-D boundary particlesadjelcent neighbors

2.4.3 Periodic Open Boundary Conditions

In the present release version of the code, opemdaries are implemented using
periodic boundary conditions. Essentially this methat particles near an open lateral
boundary interact with the particles near the cemantary open lateral boundary on
the other side of the domain. This situation isvamin Figure 2.7 where water particle
i lies near the top boundary and therefore its afeafluence (or kernel support)
extends beyond the lateral boundary. With peribdigndaries, this area of influence is
continued through the bottom boundary so that @asiinteract near the bottom
boundary within the extended support interact \pdlticlei.

30

Periodic lateral Missing kernel support

boundary D for fluid particlei
/ R
% T 7
@) o °
o ¢}
o © ©
¢} o °
o ©
o °© o o 0
° o o
o ° @ ©
'®) O

o
o

o
o

RS
SRS
A
°© 9
g’

o

o
o
&\

N

Periodic kernel support
Periodic lateral for fluid particlei
boundary

Figure 2.7: Periodic lateral boundaries: area of influencer{esupport) for particle
extend beyond top lateral boundary and is continbemligh periodic bottom boundary.

2.4.4. Floating Objects.

In SPHysics and SPH in general, the boundary icribesi by a set of discrete

boundary particles which exert a repulsive forcenater particles when they approach.
There are several methods used to try and achleveepulsion expected including

ghost particles, stationary water particles andilsype forces. In the SPHysics code,
we have two types of boundary implemented: statipmater particles (referred to as

dynamic boundary particles, Crespb al 2008) and repulsive wall particles which
exert a force on approaching water particles wigingularity in the force field as the

interparticle distance approaches zero (Monaghad HKos, 1999; Rogers and

Dalrymple, 2008). By summing the contributions rée@ on the boundary particles for

an entire body, the motion of a floating object t@nevaluated and the object moved
accordingly. Techniques such as the ghost pastitiethod become very difficult and

particularly unwieldy when there are corners orvedrsurfaces since when generating
the ghost particles it is difficult to generate tigrect force.

31

We assume that the objects are treated as rigitedodlhe force on each boundary
particle is computed by summing up the contributimm all the surrounding water
particles within the surrounding kernel. Henceytwmbary particlek experiences a force
per unit mass given by
fe= D fia (2.19)
alWPs

whereWPsdenotes water particles arfig is the force per unit mass exerted by water

particlea on boundary particl&. By the principle of equal and opposite actiom an
reaction, the force exerted by a water particleach boundary particle is given by

mkf ka = _mafak (220)

This is useful since during the simulation we oatyually compute repulsive forcg,,

exerted by the boundary partidteon water particlea. However, using relation (2.20),
we can estimate the force exerted on the moving.bod
For the motion of the moving body, we use the aqoatof basic rigid body dynamics.
The equations of motion of the body in the tramsiatl and rotational degrees of
freedom are given by

maV - > mf, and Ly > m(r —Ro)xf, (2.21)

dt kOBPs dt kOBPs

whereM is the mass of the objedtjs the moment of inertid/ is the velocity of the
object,Q is the rotational velocity of the obje®y is the position of the centre of mass
and BPsdenotes boundary particles. Equations (2.21)rdegrated in time to predict
the values ol andQ for the beginning of the next time-step. Eachraary particle
that describes the moving body has a velocity glwen

u =V+Qx(r, -R,) (2.22)

The boundary particles within the rigid body arertrmoved by integrating equation
(2.22) in time. It can be shown that this techeigqonserves both linear and angular
momenta (Monaghaet al, 2003; Monaghan, 2005).

2.5. Checking limits

In SPH, fluid particles can leave the computatiodamain in different ways, both
physically and non-physically. Once the particle ositside the domain, it is
continuously accelerated under the effect of gyavihese particles must be identified
and removed from the run to avoid spurious effeCte treatment of these particles
depends on the way they leave the computationabdom

2.5.1. Fixing the limits

Limits of the computational domain are fixed at beginning of the run depending on
the initial position of the particles. In each diien: A =max(\,(i,t =0))+h

32

ancAY" =min(A, (i,t =0)) —h | where Ay refers to the direction (X, Y or Z) and

iU[LN] refers to all particles. These limits fix the nuenbof cells of dimensions
2hx2hx2h (in 3D) used to cover the computational domain.

Limits in X, Y and Z directions remain unchanged during the run. Thnétlin Z* is
allowed to vary in time, since fluid can splash awpass the upper limit of the
container. All limits are checked at every timegyste

2.5.2. Changing the limits in"Z

When a fluid particle surpasses the upper limittlwe vertical Z direction, the
computational domain is extended and new cellsarated (see Fig. 2.8). The number
of boundary particles inside these new cells is @diately set to zero. Fluid particles
can then occupy these cells depending on theirtippsiThe number of cells in the
vertical is thus dynamically modified depending tve position of the highest fluid
particle. Furthermore, the number of boxes deceeaden the particles fall down (last
frame of Fig. 2.8). This generates important sawimg execution time, since no
redundant cell computations are performed.

Figure 2.8: Evolution of new cells in Z direction dependingtbe fluid particles
movement.

When a part of a moving object surpasses the linigper limit that part of the object it
is stopped at that upper limit for the rest of ine.

2.5.3. Limits in X, Y or Zdirections

A fluid particle can surpass the initial limits K, Y or Z direction due to several
reasons. Dynamic boundary particles are not comlgl@inpermeable. Hence a single
particle, accelerated by collision in the proximitiya boundary, can possibly penetrate
the boundary. On the other hand, the fluid canidm®lWith the container overtopping
the lateral walls. Once the fluid leaves the comsi fluid particles are continuously
accelerated by gravity away from the domain ofrggé giving rise to very small time
steps according to Eq. 3.7 slowing down the catmiria.

The position of particles is checked every timgste such a way that when a particle
is found outside the container, the particle idaegpd at a previously defined position
outside the container and marked withflag. Thus, although the particle is not
eliminated from the list (the number of particlsls,remains constant) the particle is not
allowed to move with time.

33

2.6. Restart runs & checkpointing (repetitive restats)

Restarting previous (unfinished) runs is controllsing the RESTART parameter. |If
the code is being run on computer clusters, thexes@ametimes limits as to how long a
particular job can run, e.g. 24 hours. If the cad® run for more than 24 hours, then
the code needs to be restarted repetitively, agggoknown asheckpointing. This can
be specified when first launching the SPHysics ednjesetting the restart Run
parameter in the Case files.

I _restartRun > 1 is used for Checkpointing = repetitive restgrtof code (for
clusters)

so that:

i _restartRun=0 : Start new run, once only

i _restartRun =1 :reStartold run, once only

i _restartRun=2 : Start new run, with repetitive restd@feckpointing)
I _restartRun =3 :reStartold run, with repetitive resta@heckpointing)

(Note: this parameter has been changed from viv2.t)

34

3. USER'S MANUAL

3.1. Installation
Two versions of SPHysics are available in thisasée
- SPHysics_2D. The computational domain is considdcede 2D, wherex
corresponds to the horizontal direction and the vertical direction.
- SPHysics_3D. The computational domain is fully 3xndy are the horizontal
directions ana the vertical direction.
SPHysics is distributed in a compressed file (gzip). The directory tree shown in
Figure 3.1 can be observed after uncompressingabtieage
In that figure, the following directories can besebved both in 2D and in 3D.
source contains the FORTRAN codes. This directory corgtéo subdirectories:
SPHysicsgencontains the FORTRAN codes to create the initaiditions of
the run.
SPHysicscontains the FORTRAN source codes of SPH.
execs contains all executable codes.
run_directory is the directory created to run the model. Théed#nt subdirectories
Casel, ..., CaseNlaced in this directory correspond to the differ@orking cases
to be created by the user. Input and output fitesaaitten in these directories
Post-Processing this directory contains codes to visualize results.

3.2. Program Outline

Both the 2D and 3D version consist in two programisich are run separately and in

the following order.

2D Code:
SPHysicsgen_2D: Creates the initial conditionsfded for a given case.
SPHysics 2D: Runs the selected case with the lircbaditions created by
SPHysicsgen_2D code.

3D Code:
SPHysicsgen_3D: Creates the initial conditionsfdad for a given case.
SPHysics_3D: Runs the selected case with the lirsbaditions created by
SPHysicsgen_ 3D code.

In general, 2D or 3D appended to the source filmeaeans that the source is suited
for 2D or 3D calculations.

In the remainder of this document, SPHysicsgenS#idysics, when used, refer to both

the aforementioned 2D and 3D programs for convesieRor example, SPHysicsgen
will refer to both SPHysicsgen_2D and SPHysicsgén_3

35

N=se

195 (ESHSAHAS (IEUaSsNsAdS

Smssajrorsog

Aropzammp Wy siaxa ajmos

g sasAHJS

Nese)

195 (QTSNSAHAS ([TUaSsNsAHIS

Swmssaloryasod Atopzamp mng 53aXa axmos

SISAHAS

SISAHJS

Figure 3.1.Directory tree.

36

3.2.1. SPHYSICSGEN

All subroutines are included in two source files Pkgsicsgen 2D.f or
SPHysicsgen_3D.f), depending on the nature two lweet dimensional of the
calculation. Each source uses a different commenviihere most of the variables are
stored. The common files are common.gen2D (in 2B) eommon.gen3D (in 3D).
Both versions (2D and 3D) can be compiled by thexr wsth any FORTRAN compiler
and the resulting executable file is placed in sotbry\execs

SPHysicsgen plays a dual role: (i) Creating the NE&AKLE to compile SPHysics; and
(i) Creating the output files that will be the uipfiles to be read by SPHysics. These
files contain information about the geometry of tmmain, the distribution of particles
and the different running options.

In Windows for exampleSPHysicsgen.ex@n be executed using one of the following
two commands,

1. SPHysicsgen.exe <input_file >output_file
input_fileis the general name (any name can be used) ofi¢heohtaining the running
options. Different examples afput_filewill be shown in next section.
output_fileis the general name (any name can be used) ofl¢hedntaining general
information about the run. This file is never rdadthe rest of the code and only serves
to provide information to the user.

2. SPHysicsgen.exe
In this case, data about the run must then be gedvby the user by means of the
keyboard and the information about the run appearthe screen. This option can be
used by beginners to get familiarized with theedi#ht options.

3.2.1.1. Creating compiling options

The compilation of SPHysics code depends on ther@atf the problem under
consideration and on the particular features ofrthre Thus, the user can chose the
options that are better suited to any particulabfam and only those options will be
included in the executable versionsS®PHysics This protocol speeds up calculations
since the model is not forced to make time consgrtagical decisions.

Both in 2D and 3D the following compiling optionarcbe considered:

)] Kind of kernel: (1=Gaussian; 2=Quadratic; 3=Culitirg; 5=Quintic).

i) Time stepping: (1=Predictor-Corrector;2=Verlet; §atplectic; 4=Beeman).

i) Density filter: (O=no filter; 1=Shepard; 2=MLS).

iv) Kernel correction: (O=none; 1=Kernel correctionGtadient kernel
Correction).

V) Viscosity treatment: (1=Artificial viscosity; 2=Lamar viscosity;
3=Laminar viscosity +SPS).

Vi) Equation of state: (1=Weakly Compressible Fluidit{ Bguation); 2=Ideal
Gas Equation; 3=Incompressible Fluid (Poisson eopuigt

37

vii) Boundary conditions: (1=Repulsive BC; 2=Dynamic BC)

viii) Choice of compilers: (1=gfortran; 2=ifort; 3=CVF:+8ilverfrost FTN95).
Please refer to section 4.1.1 for details on rugprilre code on Windows
using Compaq Visual Fortran, and section 4.1.2 de gfortran and ifort
compilers. The gfortran and ifort compilers havéydreen tested on Linux
and Mac OSX platforms.

3.2.1.2. Input files
Different examples of input filegeferred to herein as Case files, e.g. Caseiltpe
shown in next section, where several test casédavidlescribed.

3.2.1.3. Output files

As we mentioned above, different output files aeated bySPHY SICSgerThese files
can be used either by tI8&PHysics executabkes input files or by MATLAB codes to
visualize results (different MATLAB codes are prded in /Post-processing
subdirectory.

SPHysics.mak
Compiling file created by the executald#HYSICSgenlt depends on the running

options defined bynput_file It was prepared for Compaq Visual Fortran, Sfheest
FTN95, ifort and gfortran although it can be addgteother compilers.

INDAT
Created by5PHysicsgen
Read by SPHysics code at GETDATA (see subsectibid.3).

UNIT=11

The file contains the following variables:

i_kernel viz
i_algorithm dx
i_densityFilter dy
i_viscos dz

iBC h
i_periodicOBs(1) np
i_periodicOBs(2) nb
i_periodicOBs(3) nbf

lattice ivar_dt

i EoS dt

h_SWL tmax

B out
gamma trec_ini
coef dtrec_det
eps t sta_det
rho0 t_end_det
viscos_val i_restartRun
visc_wall CFL_number
vix TEO

vly

38

i_kernelcorrection i_vort

iRiemannSolver ndt_VerletPerform
iTVD ndt_FilterPerform
beta_lim ndt_DBCPerform
Description

i_kernel:Kind of kernel (1=Gaussian; 2= Quadratic; 3= Cubdine; 5= Quintic).

i_algorithm: Kind of algorithm (1= Predictorl Corrector algonth 2= Verlet
algorithm; 3=Symplectic; 4=Beeman algorithm).

I_densityFilter:Use of a density filter: (0= no filter; 1=Shepa2&MLS).

I_viscos:Viscosity definition 1= Artificial; 2= Laminar; 3taminar + SPS

IBC: Boundary conditions. 1=Monaghan repulsive for@spPynamic boundaries.

I_periodicOBs(1)Periodic Lateral boundaries in x direction? (13yes

I_periodicOBs(2)Periodic Lateral boundaries in y direction? (13yes

I_periodicOBs(3)Periodic Lateral boundaries in z direction? (1¥yes

lattice: Lattice: (1) SC; (2) BCC

I_EoS:Equation of State: (1) Tait equation; (2) Ideak3@) Poisson equation

h_SWL.: Still water level (m).

B: Parameter in Equation of State (Monaghan and Ki®&€9).

gammaParameter in Equation of State (Monaghan and Ki@#9) (Default value 7).

Coef: Coeffficient to calculate the smoothing length (im) terms of dx,dy,dz;
h=coefficient*sqrt(dx*dx+dy*dy+dz*dz)

eps:Epsilon parameter in XSPH approach (Default valia.

rho0: Reference density (Default value 1000 k§)/m

viscos_val: Viscosity parameter, it correspondsotdMonaghan and Koss, 1999) if
i_viscos = 1 and te (kinematical viscosity) if i_viscos = 2 or 3.

visc_wall: Wall viscosity value for Repulsive Force BC

vix, vly, viz: medium extent in X, Y, Z direction.

dx, dy, dz:Initial interparticle spacing in x, y, z direction

h: Smoothing length.

np: Total number of particles.

nb: Number of boundary patrticles.

nbf: Number of fixed boundary particles. Note that baany particles can be fixed or
move according to some external dependence (e&p,ggavemakers).

ivar_dt: Variable time step calculated when ivar_dt=1.

dt: Initial time step. It is kept throughout the ruhem ivar_dt=0.

tmax: RUN duration (in seconds)

out: Recording time step (in seconds). The positiolgory, density, pressure and mass
of every patrticle is recorded in PART file everyt saconds.

trec_ini: Initial recording time.

dtrec_detDetailed recording step.

t sta det:Start time in detailed recording.

t end_detEnd Time in detailed recording.

39

I_restartRun(0) Start a new RUN; (1) Restart an old RUN; (2WNwith CheckPointg;
(3) Restart with CheckPointing

CFL_numberConstant to calculate the time step following Gféindition (0.1, 0.5).

TEO: Initial value for the thermal energy simulatingldeal Gas

i_kernelcorrectionKernel correction: (O=none; 1=Kernel correctionGtadient kernel
Correction).

IRiemannSolverUse of Riemann Solver: (0=None, 1=Conservative,
2=NonConservative

ITVD: Use TVD, slope limiter (beta_lim)? (1=yes)

beta_lim:slope limiter using Riemann Solver

I_vort: vorticity printing ? (1=yes)

ndt_VerletPerformNumber of time steps to apply the Eulerian equatieith the
Verlet algorithm

ndt_FilterPerformNumber of time steps to apply the density filter

ndt_ DBCPerformNumber of time steps to apply the Hughes and Graf2éx0)
correction for dynamic boundary conditions.

IPART
Created by5PHysicsgen
Read by SPHysics code at GETDATA (see subsectidi.3).
UNIT=13
The file contains the following variables recordetime=0:
In 2D version
xp(1) zp(1) up(1) wp(1) rhop(1) p(1) pm(1)
xp(2) zp(2) up(2) wp(2) rhop(2) p(2) pm(2)

xp(np) zp(np) up(np) wp(np) rhop(np) p(np) pm(np)

In 3D version
xp(1) yp(1) zp(1) up(1) vp(1) wp(l) rhop(1) p(1) @in
xp(2) yp(2) zp(2) up(2) vp(2) wp(2) rhop(2) p(2) (&n

xp(np) yp(np) zp(np) up(np) vp(np) wp(np) rhop(mdnp) pm(np)

Description
xp(i) Position inx direction of particle i.

yp(i) Position iny direction of particle i.

zp(i) Position inz direction of particle i.

up(i) Velocity inx direction of particle i.
vp(i) Velocity iny direction of particle i.
wp(i) Velocity inz direction of particle i.
rhop(i) Density of particle i.

p(i) Pressure at particle i.

pm(i) Mass of particle i.

40

MATLABIN

Created by5PHysicsgen

To be used by MATLAB codes for graphical represtoia
UNIT=8

The file contains the following variables:

np
vix

vly
viz
out
nb
nbf

Description
vIx medium extent ixx direction.

vly medium extent ity direction. It is set to zero wheéDIM= 2.
vlz medium extent iz direction.
The rest of the variables were previously described

NORMALS

Created bysPHysicsgen

To be used by SPHysics code whHBE=L1. It contents the normal and tangent vectors
to each boundary particle plus the neighbours o @@undary particle.

UNIT=21

The file contains the following variables:

In 2D version

xnb(i),znb(i),

iBP_Pointer_Info(i,1), iBP_Pointer_Info(i,2), iBPoiter_Info(i,3),iBP_Pointer_Info(i,4),
BP_xz_Data(i,1), BP_xz_Data(i,2)

In 3D version
xnb(i),ynb(i),znb(i),xtb(i),ytb(i),ztb(i),xsb(i),y(i),zsb(i),
iBP_Pointer_Info(i,1), iBP_Pointer_Info(i,2), iBPoiter_Info(i,3),
iBP_Pointer_Info(i,4), iBP_Pointer_Info(i,5), iBPoiter_Info(i,6),
BP_xyz_Data(i,1), BP_xyz_Data(i,2), BP_xyz_Datg(i,3

Description
xnb(i),ynb(i),znb(i):Components of the unitary vector normal to theralauy at point i.

xtb(i),ytb(i),ztb(i): Components of the unitary vector tangential tolibandary at that
point.

xsh(i), ysb(i), zsb(i)Components of the unitary vector tangential to lleendary at
point i and perpendicular to the previous one.

IBP_Pointer_Info(i,1)Absolute index BP

41

IBP_Pointer_Info(i,2)Rank of BP (default=0, reserved for MPI)
IBP_Pointer_Info(i,3)Absolute index of i-1 neighbour BP
IBP_Pointer_Info(i,4)Absolute index of i+1 neighbour BP
IBP_Pointer_Info(i,5)Absolute index of j-1 neighbour BP
IBP_Pointer_Info(i,6)Absolute index of j+1 neighbour BP

BP_ xyz Data(i,1), BP_xyz Data(i,2), BP_xyz Datg(ixp(BP), yp(BP), zp(BP)
needed for the future release of a MPI versiomefdode.

OBSTACLE

Created by5PHysicsgen
To be used by MATLAB codes for graphical represeoita
UNIT=55

The file contains the following variables:
iopt_obst

XXmin

XXmax

YYmin

YYmax

ZZinf

ZZmax

slope

iopt_obst

XXmin

XXmax

YYmin

YYmax

ZZinf

ZZmax

slope

iopt_obst

Description
ilopt_obstConditional variable (1= obstacle exists; 0= iegdmot exist). The last one is

always zero.
XXmin Minimum value of the obstacle mdirection.
XXmax Minimum value of the obstacle xdirection.
YYmin Minimum value of the obstacle in y direction.
YYmax Minimum value of the obstacle in y direction.
ZZmin Minimum value of the obstacle in z direction.
ZZmax Minimum value of the obstacle in z direction.
SlopeObstacle slope ir direction.

42

WAVEMAKER

Created by5PHysicsgen

To be used byPHysicscode. Parameters fix the wavemaker extent and mewe It
will only move inx direction.

UNIT=66

The file contains the following variables:
iopt_wavemaker
i_paddleType
nwavemaker_ini
nwavemaker_end
X _PaddleCentre
X _PaddleStart
paddle_SWL
flap_length

stroke
twavemaker
Nfreq
A_wavemaker(n)
Period(n)
phase(n)
twinitial(n)

Description
lopt_wavemakerConditional variable (1= Wavemaker exists; 0= ieslmor exist).

I_paddleTypeEnter Paddle-Type (1: Piston, 2: Piston-flap)
nwavemaker _iniFirst wavemaker particle.
nwavemaker_end:ast wavemaker particle.
X_PaddleCentre?wavemaker Centre position in X coordinates
X_PaddleStartX_PaddleStart = 0.5*stroke

paddle SWLEnter paddle Still Water Level (SWL)
flap_length:Enter piston-flap flap_length
stroke:Wavemaker Stroke = 2*Amplitude
twavemakerinitial time of wavemaker

Nfreq: Number of frequencies

A_wavemakeAmplitude of wavemaker movement.
Period:Period of wavemaker movement.

phase(n)Phase of wavemaker movement.

twinitial(n): Start of wavemaker movement (seconds).

43

GATE

Created by5PHysicsgen

To be used b$PHysicxode. Parameters fix the gate extent and movement.
UNIT=77

The file contains the following variables:
iopt_gate

ngate_ini

ngate_end

VXgate,VYgate,VZgate

tgate

Description
lopt_gateConditional variable (1= gate exists; 0= it does exist).

ngate_iniFirst gate particle

ngate end.ast gate particle
VXgate,VYgate,VZgaté€ate velocity in coordinates
tgateStart of gate movement (seconds).

Tsunami_Landslide.txt

Created by5PHysicsgen

To be used bpPHysicxode. Parameters fix the wedge dimensions and m&viem
UNIT=88

The file contains the following variables:
iopt_RaichlenWedge
bslope

Floating_Bodies.txt

Created by5PHysicsgen

To be used bpPHysicxode. Parameters fix the floating bodies dimensants
movement.

UNIT=99

The file contains the following variables:
iopt_FloatingBodies

nbfm

num_FB

bigMass(num_FB)

biglnertiaXX(num_FB), biglnertiaYY(num_FB),biginéaZZ(num_FB)
XcylinderDimension(num_FB),YcylinderDimension(nunB)- ZcylinderDimension(num_FB)
cylinderDensity(num_FB)

FB_SpecificWeight(num_FB)

friction_coeff(num_FB)
Box_XC(num_FB),Box_YC(nhum_FB),Box_ZC(num_FB)
bigU(num_FB),bigV(num_FB),bigW(num_FB),
bigOmegaX(num_FB),bigOmegaY(num_FB),bigOmegaZ(nul) F
nb_FB(num_FB)

44

3.2.1.4. Subroutines
All subroutines in SPHysicsgen are inside a sirsglarce file SPHysicsgen 2D.f or
SPHysicsgen_3D.f

SPHysicsgeiMain program.

Depending on the subroutine, different containemgetries can be used.

BOX Subroutine to build a box in 2D or 3D.

BEACH Subroutine to build a beach in 2D or 3D. The beeghsists in a flat area
followed by a tilted region. The tilted area alwdnzs a slope ix- direction and a
possible slope ig- direction.

Each subroutine calls new subroutines to generetenalls of the container and the

different obstacles placed inside it.

BOUNDARIES LEFTSubroutine to generate the left boundary of theainar both in
2D and 3D.

BOUNDARIES RIGHT Subroutine to generate the right boundary of thetaioer
both in 2D and 3D.

BOUNDARIES BOTTOM Subroutine to generate the bottom boundary of the
container both in 2D and 3D.

BOUNDARIES FRONTSubroutine to generate the front of the contain&D.

BOUNDARIES BACKSubroutine to generate the back of the contain8bin

WALL Subroutine to generate a wall with an arbitrarypslan x- direction inside the
container.

WALL_HOLE Subroutine to generate a wall with a round shapelé imside the
container (Only in 3D version).

WALL_SLOT Subroutine to generate a wall with a slot inside ¢ontainer (Only in
3D version).

OBSTACLE Subroutine to generate an obstacle inside the ic@nta

WAVEMAKER Subroutine to generate a piston that can mowe d@irection.

GATE Subroutine to generate a gate that can move irdiaegtion.

TRAPEZOID Subroutine to generate a trapezoid inside the swrta

RAICHLENWEDGE_ PARTICLESSubroutine to generate a sliding wedge inside the
beach.

FLOATINGBODY_ PARTICLES Subroutine to generate floating bodies inside the
container.

EXTERNAL _GEOMETRY This subroutine, which only works in 2D, reads the
container and the initial fluid distribution fromfée previously generated. The
MATLAB software to generate the pre-processing vii# provided in next
release.

Apart from previous subroutines, which control thleape and dimensions of the
container, other subroutines are responsible ofitinek properties inside that container.

45

FLUID_PARTICLES Subroutine to choose between different initiatrdisitions of the
fluid.

DROP Subroutine used to generate a round shaped arear(3D) as initial position.
The velocity of the particles inside the region dam fixed by the user (all
particles share the same velocity).

SET Subroutine used to generate a set of particle iial inondition. The number of
particle and the initial position and velocity @&ah particle can be decided by the
user. This configuration is particularly useful whehecking changes in the code
since it permit runs with a small number of movpagticles.

FILL PART Subroutine used to generate a cubic area asliptstion (2D or 3D).
Different cubes can placed at different positioside the computational domain.

WAVE Subroutine used to generate a wave (2D or 3D) advgnn x- direction as
initial position.

POS VELOCSubroutine used to determine the initial positiod gelocity of particles.

PRESSURESubroutine used to determine the initial pressifiggarticles.

P_BOUNDARIES Subroutine to assign density equal to the referetaesity to the
boundary particles and gage pressure equal to zero.

CORRECT_P_BOUNDARIESSubroutine to correct pressure at boundaries. It
considers the density to be equal to the referateresity plus a hydrostatic
correction. Pressure is then calculated accordir@ptchelor equation.

PERIODICITYCHECK Subroutine to determine the limits in periodic bdary
conditions. These BC are only available in 3D ang idirection.

NORMALS CALC 2D and NORMALS CALC 3D Subroutines to calculate the
normals to be used in repulsive boundary conditions

NORMALS FILEWRITE 2DandNORMALS FILEWRITE 3DSubroutines to write
the normals to be used in repulsive boundary comdit

POSITION_CHECKSubroutine to ensure that particles are not tosecto each other.

PRECISIONWRITESubroutine to choose precision of SPHYSICS varsmbfeposition

TOCOMPILE_IFORT Subroutine to create the MAKEFILE, SPHysics.makeduso
compile SPHysics using a IFORT compiler. The sodiles to be included in
SPHysics.mak depend on the particular conditionthefrun fixed by the input
files.

TOCOMPILE _GFORTRAN Subroutine to create the MAKEFILE, SPHysics.mak,
used to compile SPHysics using a GFORTRAN compilee source files to be
included in the MAKEFILE depend on the particulanditions of the run fixed
by the input files.

TOCOMPILE CVF Subroutine to create the MAKEFILE necessary to dtemp
SPHysics using a Compaq Visual Fortran compilere Bource files to be
included in the MAKEFILE depend on the particulanditions of the run fixed
by the input files.

TOCOMPILE _FTN95 Subroutine to create the MAKEFILE necessary to mitem
SPHysics using a Silverfrost FTN95 compiler. Tharse files to be included in
the MAKEFILE depend on the particular conditionstioé run fixed by the input
files.

46

3.2.2. SPHYSICS
SPHysics nature depends on the compiling optioardehed bySPHysicsgen

3.2.2.1. Input files
The input files correspond to the output files gated bySPHysicsgerand described
in section 3.2.1.3.

3.2.2.2. Output files

PART_Kkimn

Created bySPHysicsat POUTE_3D.f or POUTE_2D.f with a periodicity seconds
fixed by theinput_fileused to rurBPHysicsgen

UNIT=23

The structure of PART_klmn is the same as thatPéfRT previously described. The
indicesk, m, n and| can take any integer value from 0 to 9, in suchay that the
maximum number of images is 9999.

Each PART_kimn file is opened, recorded and claseelach call to POUTE_3D.f or
POUTE_2D.f subroutines, so, a single UNIT=23 isgae=d to all PART_kimn files.

VORT _kimn

Created bySPHysicsat POUTE_3D.f or POUTE_2D.f with the same peridgli@as

PART_KkImn.

UNIT=24

The following variables are recorded:

vortx_temp vorty temp vortz_temp

(Note this is new for v2.0)

Description

vortx_temp, vorty temp, vortz_temeorrespond to vorticity in X,y and z constant
planes

DT
Created bysPHysicsat POUTE_3D.f or POUTE_2D.f
UNIT=19

The following variables are recorded:
time dtl dt2 dtnew

Description
time: Time instant (in seconds)

dtl: Time step based on the force per unit mass e&®n 2.2).
dt2: Time step combining the Courant and the viscaunglitions (see section 2.2).
dtnew Time step corresponding to next step usltiganddt2.

47

DETPART_KImn

Created bysPHysicsat POUTE_3D.f or POUTE_2D.f

UNIT=53

The same as PART_kIimn but with a shorter periogiditring a certain interval of the
run. Details about periodicity, starting and endho$ recording can be seen in section
4.

ENERGY

Created bySPHysicsaat ENERGY_2D.f or ENERGY_3D.f.

UNIT=50

The file contains the following variables recordedth the same periodicity as
PART_kmnl.

time Eki_p Epo_p TE_p Eki_b Epo_b TE_b

Description
time Time instant (in seconds)

Eki_p Kinetical energy summation (for fluid particles)
Epo_pPotential energy summation (for fluid particles)
TE_pThermal energy summation (for fluid particles)
Eki_bKinetical energy summation (for boundary partitles
Epo_bPotential energy summation (for boundary partjcles
TE_bThermal energy summation (for boundary particles)

NOTE: Boundary particle energies only make sensenwiising Dynamic Boundary
Conditions.

RESTART
Created bysPHysicat SPHYSICS_3D.f or SPHYSICS_2D.f
UNIT=44

The following variables are recorded:
itime time ngrab dt

Description
itime: Number of iterations since the beginning of tie.r

time: Time instant (in seconds).
ngrab Recording instant.
dt: Time step

48

3.2.2.3. Subroutines

All subroutines in SPHysicsgen are placed in threesaource file, however SPHysics
ones are placed in different source files. A sdedcription of each possible subroutine
follows.

SPHysics(Source file: SPHYSIC_2D.f or SPHYSIC_3D.f). Mginogram containing
the main loop.

GETDATA (Source file: GETDATA_2D.f or GETDATA_3D.f). Subrtine called
from SPHysics at the beginning of the run. It pd@& data about the run (scales,
kernel parameters, steps, use of gates and/or vakezn..).

ENERGY (Source file: ENERGY_2D.f or ENERGY_2D.f). Subrma& called from
SPH to record information about energy (kinematipatential and thermal). This
subroutine is called at the beginning and end efrtim and also evelut seconds
(variable provided by INDAT file). It creates thdef ENERGY described in
previous section.

INI_DIVIDE (Source file: INI_DIVIDE.f). Subroutine called fno SPH at the
beginning of the run (just for fixed boundary pegs) and from subroutine STEP
during the run (every time step for moving objeetsd fluid particles). It
initializes the link list.

DIVIDE (Source file: DIVIDE_2D.f and DIVIDE_3D.f). Subraote called from
SPHysics at the beginning of the run and from suime STEP during the run
(every time step). The first time (when called fr@RHysics) creates the link list
corresponding to the fixed boundary particles. fidet of the calls the subroutine
allocates the fluid particles and the moving boumgbarticles into the link list.

KEEP_LIST (Source file: KEEP_LIST.f). Subroutine called froBPHysics at the
beginning of the run just after calling DIVIDE.Keeps the list of fixed boundary
particles, which is never recalculated again.

CHECK_LIMITS (Source files: CHECK_LIMITS_2D.f and CHECK_LIMITSDSf).
Subroutine called from SPHysics every time stepe Bhbroutines detect the
position of particles outside the computational domand relocate them (see
section 2.5).

POUTE (Source files: POUTE_2D.f, POUTE_3D.f, POUTE_CONMMATIVE_2D.f
and POUTE_CONSERVATIVE_3D.f). Subroutine called nfroSPHysics to
record information about particles (position, véigcdensity, pressure and mass).
This subroutine is called at the beginning and ehthe run and also eveut
seconds. It creates the DT, PART and VORT filesipresly described.

STEP (Source files: STEP_PREDICTOR_CORRECTOR_2Df,
STEP_PREDICTOR_CORRECTOR_3Df, STEP_BEEMAN_2Df,
STEP_BEEMAN_3D.f, STEP_SYMPLECTIC_2D.f,

STEP_SYMPLECTIC_3D.f, STEP_VERLET_2D.f and STEPRIET 3D.f).
Subroutine called from SPHysics. It basically masathe marching procedure,
depending on the computational algorithm (Predict@orrector, Verlet,
Symplectic or Beeman).

49

CORRECT (Source files: CORRECT_2D.f, CORRECT_3D.f, CORRESPS_2D.f
and CORRECT_SPS_3D.f). This subroutine is calle@®bigP every time step. It
basically accounts for the body forces and XSPHeotion (and SPS terms are
calculated ifi_visos= 3).

RECOVER_LIST (Source file: RECOVER_LIST.f). This subroutine galled from
STEP every time step. It recovers the list corradpay to the fixed boundary
particles created by KEEP_LIST.

VARIABLE_TIME_STEP (Source files: VARIABLE_TIME_STEP_2D.f and
VARIABLE_TIME_STEP_3D.f). This subroutine is callé®m STEP every time
step. It calculates the time step considering maramnter-particle forces, the
speed of sound and the viscosity.

DENSITYFILTER (SHEPARD)Source file: DENSITYFILTER_SHEPARD _ 2D.f and
DENSITYFILTER_SHEPARD _3D.f). Subroutine called frddfPHysics every 30
time steps. It uses a Shepard filter when selentedtial conditions.

DENSITYFILTER (MLS) (Source file: DENSITYFILTER_MLS _2D.f and
DENSITYFILTER_MLS _3D.f). Subroutine called from Bigsics every 30 time
steps. It uses a MLS filter when selected in ihg@nditions.

AC_SHEPARD(Source files: AC_SHEPARD_2D.f and AC_ SHEPARD f3DThis
subroutine is called from DENSITYFILTER_MLS. It talthe subroutines
PRE_SELF SHEPARD and PRE_CELIJ_SHEPARD.

AC_MLS (Source files: AC_MLS_2D.f and AC_MLS_3D.f). Thesibroutine is called
from DENSITYFILTER_MLS. It calls the subroutines ERSELF_MLS and
PRE_CELIJ_MLS.

AC_KC (Source files: AC_KC_2D.f and AC_KC_3D.f). This sabtine is called from
STEP every time step. It calls the subroutines AC.

AC_KGC (Source files: AC_KGC_2D.f and AC_KGC_3D.f). Thisbsoutine is called
from STEP every time step. It calls the subroutiAd€s PRE_SELF_KGC and
PRE_CELIJ_KGC.

AC (Source files: AC_2D.f, AC_CONSEVATIVE 2D.f, AC 3D and
AC_CONSEVATIVE_3D.f). This subroutine is called fmo AC_NONE or
AC_KC or AC _KGC every time step. It controls theuhdary particles
movement (gates and wavemakers) and calls thewifee SELF and CELIJ.

PRE_SELF_SHEPARD (Source files: PRE_SELF_SHEPARD_2D.f,
PRE_SELF_SHEPARD_3D.f). This subroutine is callesf AC_ SHEPARD.
PRE_CELIJ_SHEPARD (Source files: PRE_CELIJ_SHEPARD_2D.f,

PRE_CELIJ_SHEPARD_3D.f). This subroutine is cafiein AC_ SHEPARD.

PRE_SELF _MLSSource files: PRE_SELF_MLS 2D.f, PRE_SELF_MLS fRDChis
subroutine is called from AC_MLS.

PRE_CELIJ_MLS (Source files: PRE_CELIJ_MLS_2D.f, PRE_CELIJ_ML®.8.
This subroutine is called from AC_MLS.

PRE_SELF_KG(Source files: PRE_SELF_KGC_2D.f, PRE_SELF_KGC fghis
subroutine is called from AC_KGC.

PRE_CELIJ_KGC(Source files: PRE_CELIJ_KGC_2D.f, PRE_CELIJ_KGO.fR
This subroutine is called from AC_KGC.

50

SELF (Source files: all SELF_*.f). This subroutine &lled from AC every time step. It
controls the interaction between particles inside samé‘cell” determined by
the link list.

CELIJ (Source files: all CELIJ_*.f). This subroutinedalled from AC every time step.
It controls the interaction between particles iesadljacentcells” determined by

the link list.

KERNEL (Source files: KERNEL_GAUSSIAN_2D.f, KERNEL_GAUSSN_3D.f,
KERNEL_QUADRATIC_2D.f, KERNEL_QUADRATIC_3D.f,
KERNEL_CUBIC_2D.f, KERNEL_CUBIC_3D.f,

KERNEL_WENDLAND5 2D.f, KERNEL_ WENDLANDS5 3D.f). TH

subroutine is called from SELF and CELIJ every tistep. It calculates the
particle-particle interaction according to kernelefidition (1=gaussian,
2=quadratic; 3=cubic; 5=wendland) and dimensiopadit the problem (2D or

3D).
VISCOSITY (Source files: VISCOSITY_ARTIFICIAL_2D.f,
VISCOSITY_ARTIFICIAL_3D.f, VISCOSITY_LAMINAR_2D.f,

VISCOSITY_LAMINAR_3D.f, VISCOSITY_LAMINAR+SPS 2D.f and
VISCOSITY_LAMINAR+SPS_3D.for). This subroutine islted from SELF and
CELIJ every time step. It calculates viscosity terdepending on the chosen
option ((1) Artificial (2) Laminar (3) Laminar +SP&nd dimensionality of the
problem (2D or 3D).

MONAGHANBC (Source file: all MONAGHANBC_*.f). This subroutines called
from CELIJ and SELF (only when considering SELF_RMONAGHAN_3D.f
and CELIJ_BC_MONAGHAN_3D.f sources). It accountsr fMonaghan’s
repulsive force between fluid and boundary parsicle

MOVINGOBJECTS(Source file: MOVINGOBJECTS_2D.f and MOVINGOBJECTS
_3D.f). This subroutine is called from STEP.

MOVINGGATE (Source file: MOVINGGATE_2D.f and MOVINGGATE _3D.fJhis
subroutine is called from MOVINGOBJECTS.

MOVINGPADDLE (Source file: MOVINGPADDLE 2D.f and MOVINGPADDLE
_3D.f). This subroutine is called from MOVINGOBJEST

MOVINGWEDGE (Source file: MOVINGWEDGE_2D.f and MOVINGWEDGE
_3D.f). This subroutine is called from MOVINGOBJEST

RIGID_BODY_MOTION (Source file: RIGID_BODY_MOTION_2D.f,
RIGID_BODY_MOTION_3D.f,
RIGID_BODY_MOTION_CONSERVATIVE_2D.f,
RIGID_BODY_MOTION_CONSERVATIVE_3D.f). It describethe movement
of the floating bodies. This subroutine is callezhi MOVINGOBJECTS.

LU _DECOMPOSITION (Source files: LU_DECOMPOSITION_2D.f,
LU DECOMPOSITION_3D.f)). This subroutine is called from
DENSITYFILTER_MLS. It constructs the LU-decompositimatrix.

EOS_IDEALGAS (Source files: EOS_IDEALGAS _2D.f, EOS_IDEALGAS_ 3. It
uses the equation of Ideal Gases to solve theyreess

51

EOS_MORRIS(Source files: EOS_ MORRIS_2D.f, EOS_MORRIS_3Dlt uses the
equation of Morris to solve the pressure.

EOS_TAIT (Source files: EOS_TAIT_2D.f, EOS_TAIT_3D.f,).Uses the equation of
Tait to solve the pressure.

VORTICITY (Source files: VORTICITY_2D.f, VORTICITY_3D.f,).tIcalculates the
vorticity terms. This subroutine is called from AiEland SELF.

UPDATENORMALS (Source file: UPDATENORMALS_2D.f and
UPDATENORMALS_3D.f). It calculates the new normatd the moving
boundary particles when Monaghan Boundary conditiaare used. This
subroutine is called from MOVINGPADDLE and RIGID_BY_MOTION.

PERIODICITYCORRECTION(Source file: PERIODICITYCORRECTION_2D.f and
PERIODICITYCORRECTION_3D.f). This subroutine conggroblems when
periodicity domain is higher than dimension extdhtis called from all the
PRE_CELIJ and CELIJ subroutines.

GRADIENTS_CALC (Source files: GRADIENTS_CALC_BASIC_2D.f,
GRADIENTS_CALC_CONSERVATIVE_2D.f,
GRADIENTS_CALC_BASIC_3D.f and

GRADIENTS_CALC_CONSERVATIVE_3D.f). This subroutine called from
all the SELF and CELIJ subroutines.

APPROX_RIEMANNSOLVER (Source files:
APPROX_RIEMANNSOLVER_CONSERVATIVE_2D.f,
APPROX_RIEMANNSOLVER_NONCONSERVATIVE_2D.f,
APPROX_RIEMANNSOLVER_CONSERVATIVE_3D.f,
APPROX_RIEMANNSOLVER_NONCONSERVATIVE_3D.f,). Thisubroutine
is called from all the SELF and CELIJ subroutindgew Riemann Solver solution
is selected.

LMITER (Source files: LIMITER_BETAMINMOD_2D.f,
LIMITER_BETAMINMOD_3D.f). This subroutine is calledfrom all the
APPROX_RIEMANNSOLVER subroutines when Riemann Splgelution is
selected.

52

4. TEST CASES

4.1. Running the model

Creating and running executable files can be dose Isy step by the user (compiling
the different source files, putting them in a certdirectory and executing the codes
while typing the values of the different variablesd options when prompted).
Nevertheless, this process can become tediousciaBpewhen running different
realizations of the same case with small differenocea small number of parameters.
The entire process can be automatically done, wadhowith some differences on
different computer systems. Here we will show twarmaples for WINDOWS and
LINUX.

NOTE: the default Compiler chosen is CVF, whichofgion 3 near the end of each
Case file.

4.1.1. Compiling and executing on Linux

SPHysics also currently supports following fortmampilers that have been tested on
Linux platforms,

1. dfortran, a free Fortran 95/2003 compiler that da® downloaded from
http://gcc.gnu.org/wiki/GFortran

2. The non-commercial Intel ® Fortran Compiler cardbg/nloaded from
http://www.intel.comwebsite.

In order to run SPHysics on Linux, gfortran, ifarid the GNU make utility need to be
installed and available in the default search gatpically /usr/bin or /usr/local/bin).
The fOllowing paragraphs explain the proceduredmgile and run the 2D version of
SPHysics. The procedure is exactly the same foBEheersion.

Compiling SPHysicsgen 2D

In the SPHysics 2D/source/SPHysicsgen2D directioeyet are two Makefiles named
SPHysicsgen_gfortran.mak and SPHysicsgen_ifort.mrAsktheir names suggest, they
are used to compile SPHysicsgen 2D using the gfortand ifort compilers
respectively. The gfortran Makefile can be executsthg the command 'make -f
Makefile_gfortran.mak’. The Makefile,
1. compiles SPHysicsgen_2D
2. checks for existence of SPHysics 2D/execs and SP#yD/execs.bak
directories. If non-existent these directoriesaeated.
3. moves the previous version of the SPHysicsgen_2Hawgable, if available, from
the execs directory to execs.bak directory
4. moves the latest compiled version of SPHysicsgPrtoZzhe execs directory.

53

Running SPHysicsgen 2D and SPHysics 2D

As mentioned before, SPHysicsgen 2D, based on pt®ns chose by the user,
generates the Makefile, SPHysics.mak, to compiée rttain program SPHysics. The
subroutines tocompile_gfortran and tocompile_ifart, SPHysicsgen_2D, write out
SPHysics.mak for gfortran and ifort compilers regpely.

There are linux batch files located in the four 28&xample directories,
run_directory/CaseN, where N=1,2,3,4. These bates &ire named CaseN_linux.bat
(N=1,2,3,4) . Similar linux batch files are locaiadhe 3D example directories.

The following table gives a detailed descriptiorttté commands used in the script file
Casel _unix_gfortran.batvhich is located in SPHysics 2D/run_directory/das€his
batch file can be executed, while in the Casel cthirg, by typing
Casel_unix_gfortran.batt the command prompt.

COMMAND COMMENTS

cd ../../source/SPHYSICSgen2D/ Change to source directory in order tc
compile SPHysicsgen using
SPHysicsgen.mak

(&)

make -f SPHYSICSgen_gfortran.mak cleafRemove any preexisting object files

make -f SPHYSICSgen_gfortran.mak Compile and generate SPHysicsgen
using SPHysicsgen.make. T
Makefile compiles and places t
SPHysicsgen_2D executable in

execs directory and moves the ol
executable to the execs.bak directory.

cd ../../run_directory/Casel Change to the Casel example directory.

.I..lexecs/SPHysigen_2D < Casel.txt Run SPHysiagen_2D with Casel.txt
Casel.out the input file instead of command i
input. The output from the execution
redirected in Casel.out

cp SPHysics.mak ../../source/SPHysics2D Copy the generated Makefile to i
SPHysics2D source directory.

cd ../../source/SPHysics2D Change to source dingataorder to
compile SPHysics using SPHysics.mak

make -f SPHysics.mak clean Remove any preexistijecofiles

54

(7]

make -f SPHysics.mak Compile and generate SPH\2ix
using SPHysicsnake. Similar to th
Makefiles for SPHysiagen 2D, this
Makefile compiles and places t
SPHysics2D executable in the exe
directory and mowe the olde
executable to the execs.bak directory

rm SPHysics.mak Remove the Makefile from tr
source/SPHysics2D directory.

cd ../../run_directory/Casel Change to the Casafinple directory

.I..lexecs/SPHysics_2D Execute SPHys23 and direct th

output from the run to sph.out

4.1.2. Compiling and executing on Windows.

In the SPHysics 2D/source/SPHysicsgen2D directioeyet are two Makefiles named
SPHysicsgen_cvf.mak and SPHysicsgen ftn95.mak. They used to compile
SPHysicsgen_2D using the CVF compiler and SilvetfféefN95 compiler (previously
Salford Fortran).

As mentioned before, SPHysicsgen 2D, based on ptens chose by the user,
generates the Makefile, SPHysics.mak, to compiée rttain program SPHysics. The
subroutine tocompile_windows and tocompile_ftn9%,SPHysicsgen_2D, write out
SPHysics.mak for cvf and silverfrost ftn95 comsleespectively.

There are windows batch files located in the examglitectories, The batch file
Casel windows_cvf.bdbcated in SPHysics\SPHysics_2D\run_directory\Casgske
Fig. 3.1) is used. Similar batch files correspondother 2D examples. Examples
corresponding to 3D calculations can be found in
ASPHysics\SPHysics_3D\run_directory\Casel

The user should, while in the Casel directory, ev@lasel windows_cvf.bain a
command window. The content of this file is briedlgscribe in next table.

COMMAND COMMENTS
del *.exe Remove previous executable files.
cd ..\..\source\SPHYSICSgen2D Change to the directory
containing the SPHysicsgen_2D
source files

55

NMAKE/f"SPHYSICSgen_cvf.mak"

NMAKE /f "SPHysicsgen.mak" is

used to compile SPHysicsgen_2D.exe.

cd ..\..\ run_directory\Casel

Change directory

copy..\..\execs\SPHysicsgen_2D.exe
SPHysicsgen _2D.exe

Copy SPHysicsgen_2D.exe file to the

working directory.

SPHysicsgen_2D.exe <Casel.txt > Casel.o

ut Run $3ggs_2D.exe.
This program creates the initigl

conditions and select the options
the run. In addition, it also creates
file SPHysics.mak that can be used
compile the SPHysics 2D code wi
the right options.

of
a
to

th

Any name can be used for the input

and output files

copy

SPHysics.makCopy the SPHysics.mak file to tk

.\..\source\SPHysics_2D\SPHysics.mak

place where the SPHysics 2D sou
files are located.

ne
rce

cd ..\..\execs\ Change to the directory where |the
executable file will be created.

del *.obj Remove previous object files

del SPHysics_2D.exe Remove previous executableovsrs
of SPHysics_2D.exe

cd..\source\SPHysics_2D Change to the directoryataing the
SPHysics_2D source files

NMAKE /f "SPHysics.mak" NMAKE /f "SPHysics.makis used to
compile SPHysics_2D.exe. There are
multiple options to compile
SPHysics_2D.exe. They are
automatically selected depending on
the initial conditions provided by the
input file (Casel.txt in this example).
The file SPHysics.mak which is
automatically created by
SPHysicsgen_2D.exe, contains
information about those options.

cd ..\..\ run_directory\Casel Change directory

copy ..\..\execs\SPHysics_2D.exe Copy SPHysics _2D.exe file to the

SPHysics_2D.exe working directory

SPHysics_2D.exe >sph.out Run the case.
Any name can be used for the output

file sph.out

56

4.2. Test case 1: 2D Dam break in a box

The

case

can be run using Casel.bat (Casel_windows_cvf.bat,

Casel windows_ftn95.bat, Casel unix_gfortran.lat Casel unix_ifort.bat) whose
output directory iCasel The input fileCasel.txis located in the output directory. The
information contained in that file can be summatias follows:

1

35§

25

05

0

0 0s 1 15 2 25 3 35 4

Figure 4.1: Initial configuration of Casel.

Input data |Variable description
Choose Starting options: 0=new, 1=restart, 2=new with CheckPointg, 3=restart
with CheckPointing
Kernel: 1=gaussian, 2=quadratic; 3=cubic; 5=Wendland
Time-stepping algorithm: 1=Predictor-corrector, 2=Verlet, 3=Symplectic,
4=Beeman
2 Density Filter: 0=none, 1=Shepard filter, 2=MLS
30 ndt_FilterPerform (if density filter is used) ?
Kernel correction 0=None, 1=Kernel correction, 2=Gradient kernel Correction
Viscosity treatment: 1=artificial; 2=laminar; 3=laminar + SPS
0.3 Viscosity value(if visc.treatment=1 it's alpha, if not kinem. visc approx 1.e-6)
0 vorticity printing ? (1=yes)
Equation of State: 1=Tait's equation, 2=ldeal Gas, 3= Morris
Maximum Depth (h_SWL) to calculate B
10 Coefficient of speed of sound (recommended 10-40) ??
2 Boundary Conditions: 1=Repulsive Force; 2=Dalrymple
15 ndt_DBCPerform ? (1 means no correction)
1 Geometry of the zone: 1=BOX, 2=BEACH, 3=COMPLEX GEOMETRY
2 Initial Fluid Particle Structure: 1= SC, 2= BCC
4.4, Box dimension LX,LZ?
0.03,0.03 Spacing dx,dz?

57

0 Inclination of floor in X (beta) ??

0,0,0 Periodic Lateral boundaries in X, Y, & Z-Directions ? (1=yes)

0 Add wall

0 Add obstacle (1=y)

0 Add wavemaker (1=y)

0 Add gate (1=y)

0 Add Floating Body (1=yes)

2 Initial conditions: 2) particles on a staggered grid

0 Correct pressure at boundaries ?? (1=y)

0.03,1. Cube containing particles : XMin, Xmax ??

0.03,2. Cube containing particles : ZMin, Zmax ??

0 Fill a new region

3,0.02 Input the tmax and out

0. initial time of outputting general data

0.0005,1.0,-

1.0 For detailed recording during RUN: out_detail, start, end

0.0001,1 Input dt??,i var_dt ??

0.2 CFL number (0.1-0.5)

0.92 h=coefficient*sqrt(dx*dx+dz*dz): coefficient ???
Use of Riemann Solver: 0=None, 1=Conservative (Vila), 2=NonConservative
(Parshikov)

3 Which compiler is desired: 1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95

Precision of XYZ Variables: 1=Single, 2=Double

58

25

285

25%

T=0.40s

W,

RN

15

T=060s

25 3 35 4

T=080s

Lomm,
) % }Z Sy,
25

3 35 4

i

5

BRI

S =

: ‘b W M’?Mg

25 3 35 4
| | -
1 5 B 7

Figure 4.2: X-Velocity plot in Casel.

59

4.3. Test case 2: 2D Dam break evolution over a wiedpttom in a box.
The case can be run usi@gse2.batwhose output directory i€ase2 The input file

Case2.txis located in the output directory. The informatmontained in that file can be
summarized as follows:

0 nz 0.4 0.6 0.4 1 1.2 1.4 1.6 1.8 2

Figure 4.3: Initial configuration of Case2

Input data |Variable description

Choose Starting options: 0=new, 1=restart, 2=new with CheckPointg, 3=restart
with CheckPointing

Kernel: 1=gaussian, 2=quadratic; 3=cubic; 5=Wendland
Time-stepping algorithm: 1=Predictor-corrector, 2=Verlet, 3=Symplectic,

1 4=Beeman

0 Density Filter: 0=none, 1=Shepard filter, 2=MLS

0 Kernel correction 0=None, 1=Kernel correction, 2=Gradient kernel Correction
1 Viscosity treatment: 1=artificial; 2=laminar; 3=laminar + SPS

0.08 Viscosity value(if visc.treatment=1 it's alpha, if not kinem. visc approx 1.e-6)
0 Vorticity printing ? (1=yes)

1 Equation of State: 1=Tait's equation, 2=ldeal Gas, 3= Morris

0.15 Maximum Depth (h_SWL) to calculate B

13 Coefficient of speed of sound (recommended 10-40) ??

2 Boundary Conditions: 1=Repulsive Force; 2=Dalrymple

1 ndt_DBCPerform ? (1 means no correction)

1 Geometry of the zone: 1=BOX, 2=BEACH, 3=COMPLEX GEOMETRY
2 Initial Fluid Particle Structure: 1= SC, 2= BCC

2,0.16 Box dimension LX,LZ?

0.005,0.005 |Spacing dx,dz?

0 Inclination of floor in X (beta) ??

0,0,0 Periodic Lateral boundaries in X, Y, & Z-Directions ? (1=yes)

0 Add wall

0 Add an obstacle (1=y)

0 Add wavemaker (1=y)

1 Add gate (1=y)

0.388 Gate position in X coordinates ??"'

0.,0.16 Gate height ??

60

0,1.5 Gate Velocity ??

0 t gate??

0 Add new gate (1=y)

0 Add Floating Bodies (1=yes) ?

2 Initial conditions: 2) particles on a staggered grid

0 Correct pressure at boundaries ?? (1=y)

0.005,0.376 | Cube containing particles : XMin, Xmax ?7?

0.005,0.15 Cube containing particles : ZMin, Zmax ?7?

1 Fill a new region

0.40,1.995 Cube containing particles : XMin, Xmax ?7?

0.005,0.018 | Cube containing particles : ZMin, Zmax ??

0 Fill a new region

1.2,0.01 Input the tmax and out

0.0 Initial time of outputting general data

0.0005,1.0,-

1.0 For detailed recording during RUN: out_detail, start, end

0.0001,1 Input dt, i_var_dt ??

0.2 CFL number (0.1-0.5)

0.92 h=coefficient*sqrt(dx*dx+dz*dz): coefficient ???
Use of Riemann Solver: 0=None, 1=Conservative (Vila), 2=NonConservative
(Parshikov)

3 Which compiler is desired: 1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95

Precision of XYZ Variables: 1=Single, 2=Double

61

Kg/m® 996

997

998 999 1000 1001 1002 1003

Figure 4.4: Density plot in Case2

1004

1005

62

4.4. Test case 3: Waves generated by a paddle ibeach

The case can be run usi@gse3.batwhose output directory i€ase3 The input file
Case3.txis located in the output directory. The informatmontained in that file can be
summarized as follows:

4.4.1 Case 2D

1.5 2 34

Figure 4.5: Initial configuration of Case3 in 2D.

Input data

Variable description

Choose Starting options: 0=new, 1=restart, 2=new with CheckPointg, 3=restart with

0 CheckPointing

3 Kernel: 1=gaussian, 2=quadratic; 3=cubic; 5=Wendland

3 Time-stepping algorithm: 1=Predictor-corrector, 2=Verlet, 3=Symplectic, 4=Beeman
1 Density Filter: 0=none, 1=Shepard filter, 2=MLS

30 ndt_FilterPerform (if density filter is used) ?

0 Kernel correction 0=None, 1=Kernel correction, 2=Gradient kernel Correction
2 Viscosity treatment: 1=artificial; 2=laminar; 3=laminar + SPS

1.0e-6 Viscosity value(if visc.treatment=1 it's alpha, if not kinem. visc approx 1.e-6)
0 Vorticity printing ? (1=yes)

1 Equation of State: 1=Tait's equation, 2=Ideal Gas, 3= Morris

0.2 Maximum Depth (h_SWL) to calculate B

16 Coefficient of speed of sound (recommended 10-40) ??

1 Boundary Conditions: 1=Repulsive Force; 2=Dalrymple

1.0e-5 Wall viscosity value for Repulsive Force BC

2 Geometry of the zone: 1=BOX, 2=BEACH, 3=COMPLEX GEOMETRY

1 Initial Fluid Particle Structure: 1= SC, 2= BCC

3.75,0.3 Box dimension LX, LZ?

0.01,0.01 Spacing dx, dz?

1.0 Length of Flat Domain

4.2364 Slope (deg) of the inclined plane (beta) ??

0,0,0 Periodic Lateral boundaries in X, Y, & Z-Directions ? (1=yes)

1 If wavemaker will be added, left pannel is not needed (1=yes)

0 Add obstacle (1=yes)

63

2 Enter Paddle-Type: 1=Piston, 2=Piston-flap, 3=Piston with prescribed motion
0.13 X_PaddleCentre

0.15 paddle_SWL

0.1344 flap_length = distance of pivot point under bed

0.0,0.3 ZZMin, ZZmax of the wavemaker ??

0.0 Initial time of wavemaker = twavemaker ??

1 Number of frequencies ??

0.2422 Wavemaker Stroke = 2*Amplitude ??

14 Period ??

0 Phase ??

0 twinitial ??

0 Add another wavemaker inside the beach (1=yes)

0 Add gate (1=yes)

0 Add Sliding Raichlen Wedge (1=yes)

0 Add Floating Body (1=yes)

1 Add water in the flat region ?? (1=yes)

0,1.0 Cube containing particles : XMin, Xmax ??

0.025, 0.18 | Cube containing particles : ZMin, Zmax ??

1 Add water in the inclined region ?? (1=yes)

1.01, 3.75 | Cube containing particles : XMin, Xmax ??

0.025, 0.18 | Cube containing particles : ZMin, Zmax ??

0 Add a solitary wave ?? (1=yes)

5.0,0.05 Input the tmax and out

0.0 initial time of recording

0.0,1.0,-1.0 | detailed recording: out_dtrecording, Start time, End Time
0.000045,1 |input dt ??, variable dt ??

0.2 CFL number (0.1-0.5)

0.92 h=coefficient*sqrt(dx*dx+dy*dy+dz*dz): coefficient ???

Use of Riemann Solver: 0=None, 1=Conservative (Vila), 2=NonConservative
(Parshikov)

Which compiler is desired: 1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95

Precision of XYZ Variables: 1=Single, 2=Double

64

01

T=0.05s

0.2

..¢‘00-ooou~000

01

save

01

0.2r

T=1.45s

sesetereae

Figure 4.6: Wave formation in Case3 (for 2D).

65

4.4.2 Case 3D

Figure 4.7: Initial configuration of Case3 in 3D.

Input data | Variable description

Choose Starting options: 0=new, 1=restart, 2=new with CheckPointg, 3=restart

0 with CheckPointing

2 Kernel: 1=gaussian, 2=quadratic; 3=cubic; 5=Wendland

1 Time-stepping algorithm: 1=predictor-corrector, 2=verlet, 3=symplectic, 4=Beeman
1 Density Filter: 0=none, 1=Shepard filter, 2=MLS

30 ndt_FilterPerform (if density filter is used) ?

0 Kernel correction 0=None, 1=Kernel correction, 2=Gradient kernel Correction
3 Viscosity treatment 1=artificial; 2=laminar; 3=laminar + SPS

1.0e-6 Viscosity value(if visc.treatment=1 it's alpha, if not kinem. visc approx 1.e-6)
0 Vorticity printing ? (1=yes)

1 Equation of State: 1=Tait's equation, 2=ldeal Gas, 3= Morris

0.15 Maximum Depth (Hmax) to calculate B

16 coefficient (10, 40) ??

1 Boundary Conditions: Monaghan =1 or Dalrymple = 2

8.0e-1 Wall viscosity value for Repulsive Force BC

2 Geometry of the zone: 1=BOX, 2=BEACH, 3=COMPLEX GEOMETRY

2 Initial Fluid Particle Structure: 1= SC, 2= BCC

2.75,0.20,0.25 | Box dimension LX, LY, LZ?

0.02,0.02,0.02 | Spacing dx, dy, dz?

0.5 Length of Flat Domain

4.2364 Slope (deg) of the inclined plane (beta) ??

0,1,0 Periodic Lateral boundaries in X, Y, & Z-Directions ? (1=yes)

1 If wavemaker will be added, left pannel is not needed (1=yes)

0 Add obstacle (1=yes)

2 Enter Paddle-Type: 1=Piston, 2=Piston-flap, 3=Piston with prescribed motion

66

0.20 X_PaddleCentre

0.15 paddle_SWL

0.1344 flap_length = distance of pivot point under bed
0.0,0.2 YYMin, YYmax of the wavemaker ??

0.0,0.25 ZZMin, ZZmax of the wavemaker ??

0.0 Initial time of wavemaker = twavemaker ??

1 Number of frequencies ??

0.2442 Wavemaker Stroke = 2*Amplitude ??

14 Period ??

0 Phase ??

0 twinitial ??

0 Add another wavemaker inside the beach (1=yes)
0 Add gate (1=yes)

0 Add Sliding Raichlen Wedge (1=yes)

0 Add Floating Body (1=yes,0=no)

1 Add water in the flat region ?? (1=yes)

0,0.49 Cube containing particles : XMin, Xmax ??

0.00, 0.20 Cube containing particles : YMin, Ymax ??
0.02,0.15 Cube containing particles : ZMin, Zmax ??

1 Add water in the inclined region ?? (1=yes)

0.50, 2.5 Cube containing particles : XMin, Xmax ??

0.00, 0.20 Cube containing particles : YMin, Ymax ??
0.02,0.15 Cube containing particles : ZMin, Zmax ??

0 Add a solitary wave ?? (1=yes)

5.0,0.025 Input the tmax and out

0.0 initial time of recording

0,1,-1 detailed recording: out_dtrecording, Start time, End Time
0.00005,0 input dt ??, variable dt ??

0.2 CFL number (0.1 - 0.5)

0.866025 h=coefficient*sqrt(dx*dx+dy*dy+dz*dz): coefficient ???

Use of Riemann Solver: 0=None, 1=Conservative (Vila), 2=NonConservative
(Parshikov)

Which compiler is desired: 1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95

Precision of XYZ Variables: 1=Single, 2=Double

67

4.5. Test case 4: Tsunami generated by a sliding \dge
The case can be run usi@gse4.batwhose output directory i€ase4 The input file
Case4.txis located in the output directory. The informatmontained in that file can be

summarized as follows:

45.1 Case 2D

Figure 4.8: Initial configuration of Case4 in 2D.

Input data Variable description
Choose Starting options: O=new, 1=restart, 2=new with CheckPointg, 3=restart
with CheckPointing
Kernel: 1=gaussian, 2=quadratic; 3=cubic; 5=Wendland
Time-stepping algorithm: 1=predictor-corrector, 2=Verlet, 3=Symplectic,
1 4=Beeman
1 Density Filter: 0=none, 1=Shepard filter, 2=MLS
30 ndt_FilterPerform (if density filter is used) ?
0 Kernel correction 0=None, 1=Kernel correction, 2=Gradient kernel Correction
3 Viscosity treatment: 1=artificial; 2=laminar; 3=laminar + SPS
1.0e-6 Viscosity value(if visc.treatment=1 it's alpha, if not kinem. visc approx 1.e-6)
0 Vorticity printing ? (1=yes)
1 Equation of State: 1=Tait's equation, 2=ldeal Gas, 3= Morris
3.0 Maximum Depth (h_SWL) to calculate B
16 Coefficient of speed of sound (recommended 10-40) ??
1 Boundary Conditions: 1=Repulsive Force; 2=Dalrymple
2.0e-4 Wall viscosity value for Repulsive Force BC
2 Geometry of the zone: 1=BOX, 2=BEACH, 3=COMPLEX GEOMETRY

68

1 Initial Fluid Particle Structure: 1= SC, 2= BCC

9.5,4.0 Box dimension LX, LZ?

0.05,0.05 Spacing dx, dz?

2.25 Length of Flat Domain

26.565051 Slope (deg) of the inclined plane (beta) ??

0,0,0 Periodic Lateral boundaries in X, Y, & Z-Directions ? (1=yes)
0 If wavemaker will be added, left pannel is not needed (1=yes)
0 Add obstacle (1=yes)

0 Add gate (1=yes)

1 Add Raichlen Wedge (1=yes)

0.3 Enter block-top elevation above SWL

2.14 Enter specific Weight

0.91, 0.455,

0.61 Enter block_length, block_height, block_width

0.04, 0.04 Enter block dxW, dzW

0 Add Floating Body (1=yes)

1 Add water in the flat region ?? (1=yes)

0.05, 2.25 Cube containing particles : XMin, Xmax ??

0.05, 3.5 Cube containing particles : ZMin, Zmax ??

1 Add water in the inclined region ?? (1=yes)

2.30,9.5 Cube containing particles : XMin, Xmax ??

0.05, 3.5 Cube containing particles : ZMin, Zmax ??

0 Add a solitary wave ?? (1=yes)

3.0,0.015 Input the tmax and out

0.0 initial time of outputting general data

0,1.0,-1.0 For detailed recording: out_dtrecording, Start time, End Time
0.00011,1 input dt ??, variable dt ??

0.2 CFL number (0.1 - 0.5)

0.92 h=coefficient*sqrt(dx*dx+dy*dy+dz*dz): coefficient ???

Use of Riemann Solver: 0=None, 1=Conservative (Vila), 2=NonConservative
(Parshikov)

Which compiler is desired: 1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95

Precision of XYZ Variables: 1=Single, 2=Double

69

10

10

4+ :
b4
T=080s :
. .
o
.
JUPTRTOREL s A
tressessesrrnernes asatet it
3k ESTTLD00000000004 Cost et i eraran, Py
- PEELIIBI IS bbb sratatetyrg av
SELLFEIHS LSS E S Sh * L e s LR
ol g A D ineahid
4ttettasassssssssns PSS NN A A
PEP00000020000 900904 SR e
tHrr s st eI EELIISIREES setabgr ey
¥ ISP 000004 g e A
3 teteastratersaterete ek
[2220009034 000000904 Rty Ly
21 1222799090000 90 RS ot W e Ly
+ Fhressertataroatitarenty i
* FEELL A PR PO h b h S
+ Trealattreatetarsas ey
% eeliivteasranses gt
* 1322433 22T D0IONN
b Sretllntesledlly
b Tareliatiil
b4 AL LOCL I
+ LRSS T IS I PaT S
5 Lesaltestte at
i atealta b, te,
% POAASEIE LT £
T4e P e R T e R A S
ESA LN RS L ST T 00‘:00‘."0
E e oy AT PR AN AN
$als E A A
RO b B I T X S A
Sresansriieissrrisiinr St s
0 | 1 * | | | 1 | 1 |
4+ :
b4
T=1.80s :
. .
o
PUe Sl
e AR AT :'”:‘:?'“‘. #
we Bar b sbppe et beabr b bESETNLL oy pg b itiaiteaitiot, ey *
O s S LS s e S SR P oeoteatt et oett Ll e AIIE L ARt Dt
P et e L e A e S L T A e
+ + + : A rag ettt ey el ol
L L L e L T A N e, . .
O L R SR 3o R S e e R O A Iy SRS S S A T D PG A S
¥ be ++ o + o ety
R e e R R R N s € B T IRO0 R AT A S 4R s 2 PR S .
" 44 et *.
+% srTetL
£ o ¥
2l b
e *a
3 +
+%
e
+
i
e
it
+
1 t 3+
;'
.
ES
1
i+
+
1
%o
0 1 | |
4+ .
b
T=285s :
2 b
RS OtA A TN *
st tastatibeny gy, treate,
PR S O s L T YRa e
PSP S S S X ICAS B
WS SR I R AR 3
[+ s asa P aastat ity +
LSO LR P S PAR RS L0 D0L
O A Rt £ 554 otet?
FE WIS Dt RS2
PR S RIS A S RIS a)
Ry DS N R N A IO,
rt . ‘0.’0 ."“.00....
RCIONSSITAISE e
eI S A R St
i,’:.’::"n’,‘uﬂ.."".o.o.." ppe g R Ay
ST IS TN IO RAR A HS S LM RN P S PN rt e +
-+ PRI P4 -t t 06 S A M do b ¥ bt
o A PSSR R A SR SR LT Er TN B PR S 3L ;:\ et
F 33T RV IRALANI S A et ."'.o."’o's rarg Cand e T e
B R R PO IS SAL A AN DS 4 0 e RNt AN
B B I R SO SRl L T A IS AL IO
B e T TR M Wttt
Talotasdedtatlins A A -
| | |

10

Figure 4.9: Tsunami generation using sliding Wedge (for 2D).

70

45.2. Case 3D

Figure 4.10: Initial configuration of Case4 in 3D.

Input data Variable description
Choose Starting options: O=new, 1=restart, 2=new with CheckPointg, 3=restart
0 with CheckPointing
2 Kernel: 1=gaussian, 2=quadratic; 3=cubic; 5=Wendland
Time-stepping algorithm: 1=Predictor-corrector, 2=Verlet, 3=Symplectic,
1 4=Beeman
1 Density Filter: 0=none, 1=Shepard filter, 2=MLS
30 ndt_FilterPerform (if density filter is used) ?
0 Kernel correction 0=None, 1=Kernel correction, 2=Gradient kernel Correction
3 Viscosity treatment: 1=artificial; 2=laminar; 3=laminar + SPS
1.0e-6 Viscosity value(if visc.treatment=1 it's alpha, if not kinem. visc approx 1.e-6)
0 vorticity printing ? (1=yes)
1 Equation of State: 1=Tait's equation, 2=ldeal Gas, 3= Morris
2.5 Maximum Depth (h_SWL) to calculate B
16 Coefficient of speed of sound (recommended 10-40) ??
1 Boundary Conditions: 1=Repulsive Force; 2=Dalrymple
8.0e-6 Wall viscosity value for Repulsive Force BC
p Geometry of the zone: 1=BOX, 2=BEACH, 3=COMPLEX GEOMETRY
2 Initial Fluid Particle Structure: 1= SC, 2= BCC
8.5,2.7,3.0 Box dimension LX, LY, LZ?

0.15,0.15,0.15

Spacing dx, dy, dz?

2.25

Length of Flat Domain

26.565051

Slope (deg) of the inclined plane (beta) ??

71

0,1,0 Periodic Lateral boundaries in X, Y, & Z-Directions ? (1=yes)
0 If wavemaker will be added, left pannel is not needed (1=yes)
0 Add obstacle (1=yes)

0 Add gate (1=yes)

1 Add Raichlen Wedge (1=yes)

0.3 Enter block-top elevation above SWL

2.14 Enter specific Weight

0.91, 0.455,

0.61 Enter block _length, block height, block width

0.04, 0.04,

0.04 Enter block dxW, dyW, dzW

0 Add Floating Body (1=yes)

1 Add water in the flat region ?? (1=yes)

0.075, 2.25 Cube containing particles : XMin, Xmax ??

0.0751, 2.651 | Cube containing particles : YMin, Ymax ??

0.075, 2.5 Cube containing particles : ZMin, Zmax ??

1 Add water in the inclined region ?? (1=yes)

2.3249999,

8.5 Cube containing particles : XMin, Xmax ??

0.0751, 2.651 | Cube containing particles : YMin, Ymax ??

0.075, 2.5 Cube containing particles : ZMin, Zmax ??

0 Add a solitary wave ?? (1=yes)

3.0,0.015 Input the tmax and out

0.0 initial time of recording

0,1,-1 detailed recording: out_dtrecording, Start time, End Time

0.0001729,1

input dt ??, variable dt ??

0.2

CFL number (0.1 - 0.5)

0.866025

h=coefficient*sqrt(dx*dx+dy*dy+dz*dz): coefficient ???

Use of Riemann Solver: 0=None, 1=Conservative (Vila), 2=NonConservative
(Parshikov)

Which compiler is desired: 1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95

Precision of XYZ Variables: 1=Single, 2=Double

72

4.6. Test case 5: 3D dam-break interaction with arsicture

The case can be run usi@gse5.batwhose output directory i€ase5 The input file
Caseb.txis located in the output directory. The informatmontained in that file can be
summarized as follows:

Gtz _
???giggiﬁiﬁﬁ 135802084000,
04 Sy e
i
02 i
01
0
’ 0.2 06
. 08 0.8 1 0.4
02
12 » e .
Figure 4.11:Initial configuration of Caseb5.
Input data Variable description
Choose Starting options: O=new, 1=restart, 2=new with CheckPointg,
3=restart with CheckPointing
3 Kernel: 1=gaussian, 2=quadratic; 3=cubic; 5=Wendland
Time-stepping algorithm: 1=predictor-corrector, 2=verlet, 3=symplectic,
4=Beeman
2 Density Filter: 0=none, 1=Shepard filter, 2=MLS
30 ndt_FilterPerform
0 Kernel correction 0=None, 1=Kernel correction, 2=Gradient kernel Correction
1 Viscosity treatment 1=artificial; 2=laminar; 3=laminar + SPS
0.1 Viscosity value(if visc.treatment=1 it's alpha, if not kinem. visc approx 1.e-6)
0 Vorticity printing ? (1=yes)
1 Equation of State: 1=Tait's equation, 2=Ideal Gas, 3= Morris
0.30 Maximum Depth (h_SWL) to calculate B
10 coefficient (10,40) ??
2 Boundary Conditions: 1=Repulsive Force; 2=Dalrymple
1 ndt_DBCPerform ? (1 means no correction)
1 Geometry of the zone: 1=BOX, 2=BEACH, 3=COMPLEX GEOMETRY
2 Initial Fluid Particle Structure: 1= SC, 2= BCC
1.6,0.67,0.4 Box dimension LX,LY,LZ?

0.0225,0.0225,0.0225 | Spacing dx,dy,dz?

73

0 inclination of floor in X (beta) ??
0 inclination of floor in Y (tita) ??
0,0,0 Periodic Lateral boundaries in X, Y, & Z-Directions ? (1=yes)
0 If wavemaker will be added, left wall is not needed
0 Add wall (1=y)
0 Add wall with slot (1=y)
0 Add wall with round hole (1=y)
1 Add obstacle (1=y)
1 Choose obstacle: 1=rectangular 2=trapezoid
2 Kind of obstacle: 1=Solid, 2=Solid Walls
Density of points(ndens): dxi_new=dxi_old/ndens (ndens >1 increases
2 density)
0.9,1.02 XMin, Xmax ??
0.24,0.36 YMin, Ymax ??
0.,0.45 ZMin, Zmax ??
90 slope
0 Add new obstacle (1=y)
0 Add wavemaker
0 Add gate
0 Add Floating Bodies (1=yes) ?
2 Initial conditions: 2) particles on a staggered grid without filling the box
0 Correct pressure at boundaries ?? (1=y)
0.0225,0.4 XMin, Xmax ??
0.0225,0.6475 YMin, Ymax ??
0.0225,0.36 ZMin, Zmax ??
1 Fill a new region

0.4225,0.8775

XMin, Xmax ??

0.0225,0.6475

YMin, Ymax ??

0.0225,0.03 ZMin, Zmax ??
1 Fill a new region
0.9,1.025 XMin, Xmax ??
0.0225,0.2175 YMin, Ymax ??
0.0225,0.03 ZMin, Zmax ??
1 Fill a new region
0.9,1.025 XMin, Xmax ??
0.3825,0.6475 YMin, Ymax ??
0.0225,0.03 ZMin, Zmax ??
1 Fill a new region

1.0425,1.5775

XMin, Xmax ??

0.0225,0.6475

YMin, Ymax ??

0.0225,0.03

ZMin, Zmax ??

0

Fill a new region

74

2,0.01 Input the tmax and out

0. initial time of outputting general data

0.0005,1.0,-1.0 For detailed recording during RUN: out_detail, start, end
0.00005,1 input dt ??, variable dt ??

0.2 CFL number (0.1-0.5)

0.866025 h=coefficient*sqrt(dx*dx+dy*dy+dz*dz): coefficient ???

Use of Riemann Solver: 0=None, 1=Conservative (Vila), 2=NonConservative
(Parshikov)

Which compiler is desired: 1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95

Precision of XYZ Variables: 1=Single, 2=Double

75

Time=0.20s

Time=040s

Time=060s

Figure 4.12: Interaction wave-structure in Case5

76

0z
0.1

4.7. Test case 6: Floating bodies in waves

The case can be run usi@gse6.batwhose output directory i€ase6 The input file

Case6.txis located in the output directory. The informatmontained in that file can be

summarized as follows:

4.7.1 Case 2D
L £
. | | | |
0.5 1 15 2 25 3 35 4 45
Figure 4.13:Initial configuration of Case6 in 2D.
Input data | Variable description
Choose Starting options: 0=new, 1=restart, 2=new with CheckPointg, 3=restart with
CheckPointing
Kernel: 1=gaussian, 2=quadratic; 3=cubic; 5=Wendland
Time-stepping algorithm (1=Predictor-corrector, 2=Verlet, 3=Symplectic,
3 4=Beeman)
0 Density Filter: 0=none, 1=Shepard filter, 2=MLS
0 Kernel correction 0=None, 1=Kernel correction, 2=Gradient kernel Correction
2 Viscosity treatment: 1=artificial; 2=laminar; 3=laminar + SPS
1.0e-6 Viscosity value(if visc.treatment=1 it's alpha, if not kinem. visc approx 1.e-6)
0 Vorticity printing ? (1=yes)
1 Equation of State: 1=Tait's equation, 2=Ideal Gas, 3= Morris
0.18 Maximum Depth (h_SWL) to calculate B
16 Coefficient of speed of sound (recommended 10-40) ??
1 Boundary Conditions: 1=Repulsive Force; 2=Dalrymple
0.0e-3 Wall viscosity value for Repulsive Force BC
2 Geometry of the zone: 1=BOX, 2=BEACH, 3=COMPLEX GEOMETRY
1 Initial Fluid Particle Structure: 1= SC, 2= BCC
4.75,0.3 Box dimension LX, LZ?
0.01,0.01 Spacing dx, dz?
2.0 Length of Flat Domain
4.2364 Slope (deg) of the inclined plane (beta) ??
0,0,0 Periodic Lateral boundaries in X, Y, & Z-Directions ? (1=yes)
1 If wavemaker will be added, left pannel is not needed (1=yes)
0 Add obstacle (1=yes)
2 Enter Paddle-Type: 1=Piston, 2=Piston-flap, 3=Piston with prescribed motion

77

0.23 X_PaddleCentre

0.15 paddle_SWL

0.1344 flap_length = distance of pivot point under bed

0.0,0.3 ZZMin, ZZmax of the wavemaker ??

0.0 Initial time of wavemaker = twavemaker ??

1 Number of frequencies ??

0.2 Wavemaker Stroke = 2*Amplitude ??

1.4 Period ??

0 Phase ??

0 twinitial ?7?

0 Add another wavemaker inside the beach (1=yes)

0 Add gate (1=yes)

0 Add Sliding Raichlen Wedge (1=yes)

1 Add Floating Body (1=yes)

0.06, 0.06 | Enter square cylinderDimension

1.0 Enter specific Weight

2.38,0.16 |Enter x,z of Bottom Left Corner (x_BottomLeft, z BottomLeft)
0.0,0.0 Enter (x,z) shift of Centre of Gravity for use in Parallel Axis Theorem
0.0, 0.0 Enter initial U,W velocity of Object

0.0,0.0 Enter initial Body Angle and Rotation Rate (Omega) - Positive anticlockwise
0.20 Enter coefficient of Friction

1 Add another Floating Body (1=yes)

0.06, 0.06 | Enter square cylinderDimension

1.0 Enter specific Weight

2.70,0.16 |Enter x,z of Bottom Left Corner (x_BottomLeft, z BottomLeft)
0.0,0.0 Enter (x,z) shift of Centre of Gravity for use in Parallel Axis Theorem
0.0, 0.0 Enter initial U,W velocity of Object

0.0,0.0 Enter initial Body Angle and Rotation Rate (Omega) - Positive anticlockwise
0.20 Enter coefficient of Friction

1 Add another Floating Body (1=yes)

0.06, 0.06 | Enter square cylinderDimension

1.0 Enter specific Weight

3.56,0.22 | Enter x,z of Bottom Left Corner (x_BottomLeft, z_BottomLeft)
0.0,0.0 Enter (x,z) shift of Centre of Gravity for use in Parallel Axis Theorem
0.0, 0.0 Enter initial U,W velocity of Object

0.0, 10.0 Enter initial Body Angle and Rotation Rate (Omega) - Positive anticlockwise
0.20 Enter coefficient of Friction

0 Add another Floating Body (1=yes)

1 Add water in the flat region ?? (1=yes)

0,20 Cube containing particles : XMin, Xmax ??

0.025, 0.18 | Cube containing particles : ZMin, Zmax ??

1 Add water in the inclined region ?? (1=yes)

78

2.01,4.75 |Cube containing particles : XMin, Xmax ??
0.025, 0.18 | Cube containing particles : ZMin, Zmax ??
0 Add a solitary wave ?? (1=yes)
7.0,0.0500 |Inputthe tmax and out
0.0 initial time of recording
0.0,1.0,-1.0 | detailed recording: out_dtrecording, Start time, End Time
0.00020,1 |input dt ??, variable dt ??
0.2 CFL number (0.1-0.5)
0.92 h=coefficient*sqrt(dx*dx+dy*dy+dz*dz): coefficient ???
Use of Riemann Solver: 0=None, 1=Conservative (Vila), 2=NonConservative
1 (Parshikov)
1,1.3 Use TVD, slope limiter (beta_lim)?"'
3 Which compiler is desired: 1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95
2 Precision of XYZ Variables: 1=Single, 2=Double

79

Figure 4.14:Floating bodies in waves 2D.

80

4.7.2. Case 3D

03

0.25

0.2

015

0.1

0.05

02" gy oo :'
Figure 4.15: Initial configuration of Case6 in 3D.
Input data | Variable description
Choose Starting options: 0=new, 1=restart, 2=new with CheckPointg, 3=restart
with CheckPointing
Kernel: 1=gaussian, 2=quadratic; 3=cubic; 5=Wendland
Time-stepping algorithm: 1=predictor-corrector, 2=verlet, 3=symplectic,
3 4=Beeman
0 Density Filter: 0=none, 1=Shepard filter, 2=MLS
0 Kernel correction 0=None, 1=Kernel correction, 2=Gradient kernel Correction
2 Viscosity treatment: 1=artificial; 2=laminar; 3=laminar + SPS
1.0e-6 Viscosity value(if visc.treatment=1 it's alpha, if not kinem. visc approx 1.e-6)
0 vorticity printing ? (1=yes)
1 Equation of State: 1=Tait's equation, 2=ldeal Gas, 3= Morris
0.15 Maximum Depth (Hmax) to calculate B
16 coefficient (10, 40) ??
1 Boundary Conditions: 1=Repulsive Force; 2=Dalrymple
0.0e-1 Wall viscosity value for Repulsive Force BC
2 Geometry of the zone: 1=BOX, 2=BEACH, 3=COMPLEX GEOMETRY
2 Initial Fluid Particle Structure: 1= SC, 2= BCC

2.75,0.20,0.25

Box dimension LX, LY, LZ?

0.02,0.02,0.02

Spacing dx, dy, dz?

0.5

Length of Flat Domain

4.2364 Slope (deg) of the inclined plane (beta) ??

0,1,0 Periodic Lateral boundaries in X, Y, & Z-Directions ? (1=yes)

1 If wavemaker will be added, left pannel is not needed (1=yes)

0 Add obstacle (1=yes)

2 Enter Paddle-Type: 1=Piston, 2=Piston-flap, 3=Piston with prescribed motion

81

0.13

X_PaddleCentre

0.15 paddle_SWL

0.1344 flap_length = distance of pivot point under bed
0.0,0.2 YYMin, YYmax of the wavemaker ??

0.0,0.25 ZZMin, ZZmax of the wavemaker ??

0.0 Initial time of wavemaker = twavemaker ??

1 Number of frequencies ??

0.111 Wavemaker Stroke = 2*Amplitude ??

1.5 Period ??

0 Phase ??

0 twinitial ??

0 Add another wavemaker inside the beach (1=yes)

0 Add gate (1=yes)

0 Add Sliding Raichlen Wedge (1=yes)

1 Add Floating Body (1=yes)

0.06, 0.06,

0.06 Enter X, Y & Z cylinderDimensions

1.0 Enter specific Weight

1.0, 0.08,0.20 | Enter x,y,z of Bottom Left Corner (x_BottomLeft, z_BottomLeft)
0.0,0.0,0.0 Enter (x,y,z) shift of Centre of Gravity for use in Parallel Axis Theorem
0.0,0.0,0.0 Enter initial U,V,W velocity of Object

0.0,0.0,0.0 Enter initial Body Angle in X, Y Z Directions
0.0,0.0,0.0 Enter initial Rotation Rate (Omega) in X, Y Z Directions
0.20 Enter coefficient of Friction

1 Add another Floating Body (1=yes)

0.06, 0.06,

0.06 Enter X, Y & Z cylinderDimensions

1.0 Enter specific Weight

1.6, 0.16,0.24 | Enter x,y,z of Bottom Left Corner (x_BottomLeft, z_ BottomLeft)
0.0,0.0,0.0 Enter (x,y,z) shift of Centre of Gravity for use in Parallel Axis Theorem
0.0,0.0,0.0 Enter initial U,V,W velocity of Object

0.0,0.0,0.0 Enter initial Body Angle in X, Y Z Directions

10.0, 0.0, 0.0 | Enter initial Rotation Rate (Omega) in X, Y Z Directions
0.20 Enter coefficient of Friction

0 Add another Floating Body (1=yes,0=no)

1 Add water in the flat region ?? (1=yes)

0, 0.49 Cube containing particles : XMin, Xmax ??

0.00, 0.20 Cube containing particles : YMin, Ymax ??

0.02, 0.15 Cube containing particles : ZMin, Zmax ??

1 Add water in the inclined region ?? (1=yes)

0.50, 2.5 Cube containing particles : XMin, Xmax ??

0.00, 0.20 Cube containing particles : YMin, Ymax ??

82

0.02, 0.15

Cube containing particles : ZMin, Zmax ??

0

Add a solitary wave ?? (1=yes)

4.0,0.01 Input the tmax and out
0.0 initial time of recording
0,1,-1 detailed recording: out_dtrecording, Start time, End Time
0.00020,1 input dt ??, variable dt ??
0.4 CFL number (0.1-0.5)
0.866025 h=coefficient*sqrt(dx*dx+dy*dy+dz*dz): coefficient ???
Use of Riemann Solver: 0=None, 1=Conservative (Vila), 2=NonConservative
1 (Parshikov)
1,13 Use TVD, slope limiter (beta_lim)?"'
3 Which compiler is desired: 1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95
2 Precision of XYZ Variables: 1=Single, 2=Double

83

0.4

4.8. Test case 7: Focused wave group approachingprezoid

The case can be run usi@gse7.batwhose output directory i€ase? The input file
Case7.txis located in the output directory. The informatmontained in that file can be
summarized as follows:

4.8.1. Case 2D

Figure 4.16: Initial configuration of Case7 in 2D.

Input data Variable description
Choose Starting options: 0=new, 1=restart, 2=new with CheckPointg,
3=restart with CheckPointing
Kernel: 1=gaussian, 2=quadratic; 3=cubic; 5=Wendland
Time-stepping algorithm: 1=Predictor-corrector, 2=Verlet, 3=Symplectic,
1 4=Beeman
0 Density Filter: 0=none, 1=Shepard filter, 2=MLS
2 Kernel correction 0=None, 1=Kernel correction, 2=Gradient kernel Correction
2 Viscosity treatment: 1=artificial; 2=laminar; 3=laminar + SPS
1.0e-6 Viscosity value(if visc.treatment=1 it's alpha, if not kinem. visc approx 1.e-6)
0 Vorticity printing ? (1=yes)
1 Equation of State: 1=Tait's equation, 2=Ideal Gas, 3= Morris
0.50 Maximum Depth (h_SWL) to calculate B
30 Coefficient of speed of sound (recommended 10-40) ??
1 Boundary Conditions: 1=Repulsive Force; 2=Dalrymple
8.0e-4 Wall viscosity value for Repulsive Force BC
2 Geometry of the zone: 1=BOX, 2=BEACH, 3=COMPLEX GEOMETRY
1 Initial Fluid Particle Structure: 1= SC, 2= BCC
13.0,0.8 Box dimension LX, LZ?
0.02,0.02 Spacing dx, dz?
1.48 Length of Flat Domain
2.8624 Slope (deg) of the inclined plane (beta) ??
0,0,0 Periodic Lateral boundaries in X, Y, & Z-Directions ? (1=yes)
1 If wavemaker will be added, left pannel is not needed (1=yes)
1 Add obstacle (1=yes)
2 Choose obstacle: 1=rectangular, 2=trapezoid

84

9.605,0.40625

Enter (x,z)-start of trapezoid

10.065,0.6085

Enter (x,z)-start of trapezoid top

10.28,0.6085

Enter (x,z)-finish of trapezoid top

10.62,0.457 Enter (x,z)-finish of trapezoid

0 Add another obstacle (1=yes)

3 Enter Paddle-Type: 1=Piston, 2=Piston-flap, 3=Piston with prescribed motion
0.0 X_PaddleCentre

FocusWavePaddle.dat

Enter filename of prescribed motion

0.5

paddle_SWL

0.0,0.7 ZZMin, ZZmax of the wavemaker ??

0.0 Initial time of wavemaker = twavemaker ??

1 Number of frequencies ??

0.0 Wavemaker Stroke = 2*Amplitude ??

0 Period ??

0 Phase ??

0 twinitial ?7?

0 Add another wavemaker inside the beach (1=yes)

0 Add gate (1=yes)

0 Add Sliding Raichlen Wedge (1=yes)

0 Add Floating Body (1=yes)

1 Add water in the flat region ?? (1=yes)

0.0,1.48 Cube containing particles : XMin, Xmax ??

0.02,0.50 Cube containing particles : ZMin, Zmax ??

1 Add water in the inclined region ?? (1=yes)

1.50,9.915 Cube containing particles : XMin, Xmax ??

0.02, 0.50 Cube containing particles : ZMin, Zmax ??

0 Add a solitary wave ?? (1=yes)

12.0,0.040 Input the tmax and out

0.0 initial time of recording

0.0,1.0,-1.0 detailed recording: out_dtrecording, Start time, End Time

0.00005,1 input dt ??, variable dt ??

0.2 CFL number (0.1 - 0.5)

0.92 h=coefficient*sqrt(dx*dx+dy*dy+dz*dz): coefficient ???
Use of Riemann Solver: 0=None, 1=Conservative (Vila), 2=NonConservative

2 (Parshikov)

1,1.0 Use TVD Riemann Solver, slope limiter (beta_lim)

3 Which compiler is desired: 1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95

1 Precision of XYZ Variables: 1=Single, 2=Double

85

T=0.000s ‘1

12

T=3.960s ‘1

12

T=5.960s ‘_[

12

T=7.000s ‘_[

12

T=9.160s ‘_[

12

Figure 4.17:Pressure plot in Case?.

86

4.8.2. Case 3D

Figure 4.18: Initial configuration of Case7 in 3D.

Input data Variable description
Choose Starting options: 0=new, 1=restart, 2=new with CheckPointg,
3=restart with CheckPointing
3 Kernel: 1=gaussian, 2=quadratic; 3=cubic; 5=Wendland
Time-stepping algorithm: 1=Predictor-corrector, 2=Verlet, 3=Symplectic,
1 4=Beeman
0 Density Filter: 0=none, 1=Shepard filter, 2=MLS
2 Kernel correction 0=None, 1=Kernel correction, 2=Gradient kernel Correction
3 Viscosity treatment: 1=artificial; 2=laminar; 3=laminar + SPS
1.0e-6 Viscosity value(if visc.treatment=1 it's alpha, if not kinem. visc approx 1.e-6)
0 vorticity printing ? (1=yes)
1 Equation of State: 1=Tait's equation, 2=Ideal Gas, 3= Morris
0.5 Maximum Depth (h_SWL) to calculate B
16 Coefficient of speed of sound (recommended 10-40) ??
1 Boundary Conditions: 1=Repulsive Force; 2=Dalrymple
8.0e-5 Wall viscosity value for Repulsive Force BC
2 Geometry of the zone: 1=BOX, 2=BEACH, 3=COMPLEX GEOMETRY
1 Initial Fluid Particle Structure: 1= SC, 2= BCC
14.0,1.5,0.8 Box dimension LX, LY, LZ?
0.06,0.06,0.06 Spacing dx, dy, dz?
1.48 Length of Flat Domain
2.8624 Slope (deg) of the inclined plane (beta) ??
0,0,0 Periodic Lateral boundaries in X, Y, & Z-Directions ? (1=yes)
1 If wavemaker will be added, left pannel is not needed (1=yes)
1 Add obstacle (1=yes)
2 Choose obstacle: 1=rectangular, 2=trapezoid
10.357,0.443 Enter (x,z)-start of trapezoid

87

11.0,0.7 Enter (x,z)-start of trapezoid top

11.5,0.7 Enter (x,z)-finish of trapezoid top

12.,0.55 Enter (x,z)-finish of trapezoid

0.0,1.5 Enter YYMin, YYmax of trapezoid ??

0 Add another obstacle (1=yes)

3 Enter Paddle-Type: 1=Piston, 2=Piston-flap, 3=Piston with prescribed motion
0.0 X_PaddleCentre

FocusWavePaddle.dat

Enter filename of prescribed motion

0.5

paddle_SWL

0.0,1.5 YYMin, YYmax of the wavemaker ??

0.0,0.7 ZZMin, ZZmax of the wavemaker ??

0.0 Initial time of wavemaker = twavemaker ??

1 Number of frequencies ??

0.0 Wavemaker Stroke = 2*Amplitude ??

0 Period ??

0 Phase ??

0 twinitial ??

0 Add another wavemaker inside the beach (1=yes)

0 Add gate (1=yes)

0 Add Sliding Raichlen Wedge (1=yes)

0 Add Floating Body (1=yes,0=no)

1 Add water in the flat region ?? (1=yes)

0.0, 1.48 Cube containing particles : XMin, Xmax ??

0.06, 1.44 Cube containing particles : YMin, Ymax ??

0.06, 0.5 Cube containing particles : ZMin, Zmax ??

1 Add water in the inclined region ?? (1=yes)

1.56, 11.0 Cube containing particles : XMin, Xmax ??

0.06, 1.44 Cube containing particles : YMin, Ymax ??

0.06, 0.5 Cube containing particles : ZMin, Zmax ??

0 Add a solitary wave ?? (1=yes)

10.0,0.10 Input the tmax and out

0.0 initial time of recording

0.0,1.0,-1.0 detailed recording: out_dtrecording, Start time, End Time

0.00005,1 input dt ??, variable dt ??

0.5 CFL number (0.1 - 0.5)

0.866025 h=coefficient*sqrt(dx*dx+dy*dy+dz*dz): coefficient ???
Use of Riemann Solver: 0=None, 1=Conservative (Vila), 2=NonConservative

2 (Parshikov)

1,14 Use TVD, slope limiter (beta_lim)?"

3 Which compiler is desired: 1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95

2 Precision of XYZ Variables: 1=Single, 2=Double

88

4.9. Test case 8: Floating bodies with 2D Periodigi

The case can be run usi@gse8.batwhose output directory i€ase8 The input file
Case8.txis located in the output directory.

Figure 4.19: Initial configuration of Case8.

Input data | Variable description
Choose Starting options: 0=new, 1=restart, 2=new with CheckPointg, 3=restart
with CheckPointing

5 Kernel: 1=gaussian, 2=quadratic; 3=cubic; 5=Wendland
Time-stepping algorithm: 1=Predictor-corrector, 2=Verlet, 3=Symplectic,
4=Beeman
Density Filter: 0=none, 1=Shepard filter, 2=MLS

30 ndt_FilterPerform (if density filter is used) ?

0 Kernel correction 0=None, 1=Kernel correction, 2=Gradient kernel Correction
Viscosity treatment: 1=artificial; 2=laminar; 3=laminar + SPS

0.3 Viscosity value(if visc.treatment=1 it's alpha, if not kinem. visc approx 1.e-6)
vorticity printing ? (1=yes)
Equation of State: 1=Tait's equation, 2=Ideal Gas, 3= Morris

2 Maximum Depth (h_SWL) to calculate B

10 Coefficient of speed of sound (recommended 10-40) ??

2 Boundary Conditions: 1=Repulsive Force; 2=Dalrymple

15 ndt_DBCPerform ? (1 means no correction)

1 Geometry of the zone: 1=BOX, 2=BEACH, 3=COMPLEX GEOMETRY

2 Initial Fluid Particle Structure: 1= SC, 2= BCC

4.4, Box dimension LX,LZ?

0.03,0.03 Spacing dx,dz?

0 Inclination of floor in X (beta) ??

1,0,0 Periodic Lateral boundaries in X, Y, & Z-Directions ? (1=yes)

0 Add wall

1 Add obstacle (1=y)

89

1 Choose rectangular (1) or trapezoid (2)

2 Which kind of obstacle: (1) Solid, (2) With Solid Walls

2 Density of points, ndens

1.00,2.0 Cube containing particles : XMin, Xmax ??

0.03,2.0 Cube containing particles : ZMin, Zmax ??

90.00 Inclination (beta) ??

0 Add another obstacle (1=y)

0 Add wavemaker (1=y)

0 Add gate (1=y)

1 Add Floating Body (1=yes)

0.25,0.25 Enter X & Z cylinderDimensions

1.0 Enter specific Weight

3.50, 0.50 Enter x,z of Bottom Left Corner (x_BottomLeft, z BottomLeft)
0.0,0.0 Enter (x,z) shift of Centre of Gravity for use in Parallel Axis Theorem
0.0, 0.0 Enter initial U,W velocity of Object

0.0,0.0 Enter initial Body Angle and Rotation Rate (Omega) - Positive anticlockwise
0.20 Enter coefficient of Friction

1 Add another Floating Body (1=yes)

0.25,0.25 Enter X & Z cylinderDimensions

1.0 Enter specific Weight

0.875,2.01 |Enter x,z of Bottom Left Corner (x_BottomLeft, z BottomLeft)
0.0,0.0 Enter (x,z) shift of Centre of Gravity for use in Parallel Axis Theorem
0.0, 0.0 Enter initial U,W velocity of Object

0.0,0.0 Enter initial Body Angle and Rotation Rate (Omega) - Positive anticlockwise
0.0 Enter coefficient of Friction

0 Add another Floating Body (1=yes)

2 Initial conditions: 2) particles on a staggered grid

0 Correct pressure at boundaries ?? (1=y)

2.03,3.0 Cube containing particles : XMin, Xmax ??

0.03,2. Cube containing particles : ZMin, Zmax ??

0 Fill a new region

3,0.02 Input the tmax and out

0. initial time of outputting general data

0.0005,1.0,-

1.0 For detailed recording during RUN: out_detail, start, end

0.0001,1 Input dt??,i var_dt ??

0.2 CFL number (0.1-0.5)

0.92 h=coefficient*sqrt(dx*dx+dz*dz): coefficient ???

Use of Riemann Solver: 0=None, 1=Conservative (Vila), 2=NonConservative
(Parshikov)

Which compiler is desired: 1=gfortran, 2=ifort, 3=CVF, 4=Silverfrost FTN95

Precision of XYZ Variables: 1=Single, 2=Double

90

15
1 Jot
0.5
O Y
0.5

T=0.280s

R

R
\\\\\\

T=0840s

%%3»’?«\“&»

s

D

T=1.940s >

2

2

T=0640s

.

X0
35

T=1620s

T=2420s

Figure 4.20: Floating bodies with 2D Periodicity.

91

4.10. Test case 9: Blender

The case shows the capability of the open-sourcegram named Blender
(www.blender.oryy The user can create a case with more complemege®s using the
Blender tools. A blender file and a python scripé grovided. The script allows
creating the input data needed in SPHYSICSGEN.

A complete description can be found at: SPHysics-Bhder guide: Mayrhofer, A.,
Gomez-Gesteira, M., Crespo, A.J.C. and Rogers, B.Combining Blender with
SPHysics, an Introduction, July 2010.

92

5. HOW TO CHANGE SPHysics FOR YOUR APPLICATION

Introduction

When people start using the SPHysics code, we gfétrasked if the code can do a
particular function that is not included in the derstration cases. The answer we give
is normally yes, but the particular functionaligguired may require some re-coding.
We do not normally propose to do this re-codingselues unless the application area
coincides closely with our own area and currenjqats, or there is a bug. The reason
behind this is that SPHysics is primarily a reskaicde and we have released what we
have found useful for our own research. As theededesearch oriented, it is up to the
user to adapt the code and the subroutines togagsafaction.

This short section is aimed at helping those pewgie want to change the code for
their own purposes. Here, we list which subrowimethe code you should examine for
possible modificationImportant Note: if you create any new subroutines for the main
source code, you must include the names of thesdiles in the “make files” used for
compiling the code which are written in subroutingsoconpile_cvf,
toconpi | e_ftn95, toconpil e_gfortran, toconpile_ifort in
SPHYSICSgen 2D/3D.f. Read Section 3.2.2.3 to dereveach of the subroutines are
compiled.

1. Changing the motion of moving objects (forced otion)
movi ngbj ects_20/ 3D. f controls the calling ofnovi ngGate_ 2D/ 3D. f,
nmovi ngPaddl e_20/ 3D. f, nmovi ng\Wedge_2D/ 3D. f and
rigid _body notion_2D/ 3D.f. Ifthe motion you desire is not covered by these
subroutines, then you must create your own.

2. Changing the boundary conditions.
Boundary conditions are treated in eachlij & self subroutines. Any
modification to the boundary conditions should bealin these subroutines.

3. Changing the timestepping algorithm
The timestepping is performed in all of the step breutines:
step_predictor_corrector_ 2D/ 3D. f, step_verlet 2D/ 3D. f,
step_synplectic_ 2D/ 3D.f, step_Beeman_2D/3D.f. These subroutines
then call subroutines ac which control the sweepsacthe particles (oh2yrid) for
each (part of the) timestep.

4. Changing the kernel calculation

The smoothing kernel and its derivatives are catedl in the kernel subroutines:
kernel _gaussi an_20/ 3D. f, kernel quadratic_ 20/ 3D. f,
kernel _cubic_2D/3D.f and kernel _Wendl and_2D/ 3D. f. In version 2.0 of

SPHysics, these can now optionally be correcteddck of complete support in
subroutineker nel _correcti on (see Section 1.9).
5. Changing the viscous formulation

93

6.

The viscous terms are all calculated in the vidgasubroutines which are called
from celij & sel f: viscosity_artificial_20/ 3D.f,
viscosity | am nar_20/3D.f, viscosity_|am nar+SPS 2D/ 3D.f. For
the SPS turbulence model, the shear stresses @redz@ subroutine ac and then
defined for the next timestep in subroutaw r ect _SPS 2D/ 3D. f .

Loading in data files and setting useful paranters

If you wish to examine and modify what data SPHys$ads initially, all the useful
data is imported in subroutinget data_20/ 3D.f Furthermore, all the useful
parameters that remain the same throughout thelaiom are calculated here such
as the kernel normalization factors, etc. All glblvariables are stored in the
common blocks contained aonmon. 20 3D.

7. Zeroing variables

Many variables that are evaluated throughout thegitep, such as the accelerations,
ax, ay, az are zeroed initially in the different ac subroesnac_20¥ 3D. f,
ac_Conservative 20/ 3D.f, ac_Shepard 20/3D.f, ac_MS 20/ 3D.f,
ac_KGC 20 3D.f, ac_KC 20y 3D. f .

8. Changing the input geometry

At present, SPHysics is limited to generating a $&wple geometric structures both
in 2-D and 3-D such as boxes, planar beachesgtrian moving wedges, square
floating objects. Generating the geometry is aculed by the code
SPHYSI CSgen_2D/ 3D. f . As explained in Section 3.2, the input casesfdan be
used to generate a mixture of these basic optiingou wish to modify or add new
options, you will need to edit and modi®PHYSI CSgen_2D/ 3D. f . Here, we try
to give you some indications which subroutineshange:
() main geometric container shapex, beach

(i) static obstacles:r apezoi d, wal |, obstacles

(ii) filling the particles:fil | _part (& maybef| ui d_particl es)

(iv) forced motion objects: gat e, wavenaker ,
Rai chl enWwedge_Particles, fill_part

(v) free-motion objects (floatingfl oat i ngBody_Particles, fill_part

In future versions of the SPHysics code, a comgleametry generator already under
development (sebttp://wiki.manchester.ac.uk/sphysics/index.phpA@buatorg will be
provided and will make creating new geometries &vatling in CAD files more
accessible.

94

6. VISUALIZATION

To visualize the results obtained from SPHysics usations, some basic post-
processing programs have been provided in the SB#Hy¥D/Post-Processing and
SPHysics-3D/Post-Processing directories.

Detailed README files, explaining the procedureview the results using Matlab and
Paraview, are available in those directories. Ther us encouraged to read these
README files prior to using the visualization pragns.

7. REFERENCES

Batchelor, G. K. 1974Introduction to fluid dynamicsCambridge University Press.
U.K.

Beeman, D. (1976). SomeMultistepMethods for Useat@dular Dynamics
CalculationsJournal of Computational Physic20, 130—139.

Benz W. 1990. Smoothed Particle Hydrodynamics: Aieng in The numerical
Modelling of Nonlinear Stellar Pulsations: Problerasd ProspectsJ.R. Butchler
ed., Kluwer Acad. Publ. 269-288

Bonet J. and T.-S. L. Lok. Variational and momenfuservation aspects of Smoothed
Particle Hydrodynamic formulation§omput. Methods Appl. Meckngrg, 180,
97-115, 1999.

Capone, T., Panizzo, A., Cecioni, C. and Dalrym@eA. (2007). “Accuracy and
Stability of Numerical Schemes in SPHSPHERIC Second Intl. Workshop,
Madrid.

Cha, S.-H., and Whitworth, A.P., Implementationsd aests of Godunov-particle
hydrodynamicsMon. Not. R. Astro. SqB40, 73-90, 2003.

Colagrossi A. and M. Landrini. Numerical simulatiohinterfacial flows by smoothed
particle hydrodynamicsl. Comp. Phys191, 448-475, 2003.

Crespo, A.J.C., GOmez- Gesteira, M and Dalrympléy. R0O07. Boundary conditions
generated by dynamic particles in SPH meth@asnputers, materials & continua,
5(3): 173-184.

Dilts, G. A. Moving-Least—Squares-Particle Hydrodgmcs — |. Consistency and
stability, Int. J. Numer. Meth. Engng4, 1115-1155, 1999.

GOmez-Gesteira, M. and Dalrymple, R. 2004. Usi@fpaSPH method for wave impact
on a tall structurel. Wtrwy. Port, Coastal and Ocean Engit@0(2): 63-69.

Gomez-Gesteira, M., Cerqueiro, D., Crespo, C., Rablymple, R. 2005. Green water
overtopping analyzed with a SPH mod@tean Engineering32: 223-238.

Gotoh, H., Shao S., and Memita, T. 2004. SPH-LESehtor numerical investigation
of wave interaction with partially immersed breakeva Coastal Engineering
Journal,46(1): 39-63.

95

Guilcher, P.M., Ducorzet, G., Alessandrini, B. ddFerrant, Water wave propagation
using SPH model$roc. of 2 Int. SPHERIC WorkshoSpain, 119-124, 2007.

Dalrymple, R.A. and Knio, O. 2000. SPH modellingwediter waves,Proc. Coastal
DynamicsLund.

Dalrymple, R.A. and Rogers, B.D. 2006. Numericabelong of water waves with the
SPH methodCoastal Engineering3: 141 — 147

Hirsch C.Numerical Computation of Internal and External Fyw/ol. 1,John Wiley
and Sons 1998.

Hughes, J. and Graham, D., Comparison of incomitlesand weakly-compressible
SPH models fro free-surface water flowsHyd. Res in press, 2010.

Leimkuhler B J, Reich S, Skeel RDntegration Methods for Molecular dynamic IMA
Volume in Mathematics and its applicati@pringer 1997.

Lo, E.Y.M. and Shao, S., Simulation of near-shooétary wave mechanics by an

incompressible SPH metho8lpplied Ocean Researchd, 275-286, 2002.

Liu, G.R. 2003. Mesh Free methods: Moving beyorel fthite element method. CRC
Press, pp. 692.

Liu, W., Li, S., and Belytscho, T. 1997. “Movingal&t square Kernel Galerkin method
() methodology and convergenceZomput. Methods Appl. Mech. Engineerjng.
143:113.

Monaghan, J. J. 1982 Why particle methods w&ilam J. Sci. Stat. Comp8: 422-
433.

Monaghan, J. J. 1989. On the problem of penetratioparticle methodsJournal
Computational Physi¢c$82: 1-15.

Monaghan, J. J. 1992. Smoothed particle hydrodycemAnnual Rev. Astron. Appl.
30: 543- 574.

Monaghan, J. J. 1994. Simulating free surface flawtis SPH.Journal Computational Physics
110: 399- 406.

Monaghan, J. J. 2000. SPH without tensile instgbiliournal Computational Physics,
159: 290-311.

Monaghan, J. J. 2005. Smoothed Particle HydrodyceRiep. Prog. Phy$8: 1703-
1759.

Monaghan, J. J. and Kos, A. 1999. Solitary waves @retan beachl. Wtrwy. Port,
Coastal and Ocean Engrdl25: 145-154.

Monaghan, J.J., and Lattanzio, J.C., 1985. A rdfimethod for astrophysical problems.
Astron. Astrophysl49: 135-143

Monaghan, J.J., A. Kos, and N. Issa., Fluid motmgenerated by impact]. of
Waterway, Port, Coastal and Ocean EngineeritZp, 250-259, 2003.

Morris, J.P., Fox, P.J. and Shu, Y. 1997. Modelilmgver Reynolds number
incompressible flows using SPBburnal Computational Physic$36: 214-226.

Peskin, C. S. 1977. Numerical analysis of bloodwflan the heart.Journal
Computational Physic25: 220- 252.

Rogers, B.D. and R.A. Dalrymple, SPH Modeling ofinami waves,Advances in
Coastal and Ocean Engineering, Vol. 10 Advanced éNizad Models for tsunami
waves and runupNorld Scientific, 2008.

96

Rogers, B.D., Dalrymple, R.A., Stansby, P.K., Siatioin of caisson breakwater
movement using SPHpurnal of Hydraulic Researclin Press, 2009.

Toro, E.F., Spruce, M. & Speares, W., Restoratibthe contact surface in the HLL-
Riemann solverShock Waved, 25-34, 1994.

Toro, E.F.,Shock capturing methods for free surface shallowdl John Wiley & Sons,
2001.

Verlet, L. 1967. Computer experiments on classittaids. I. Thermodynamical
properties of Lennard-Jones moleculelys. Rev159: 98-103.

Vila, J.-P., On particle weighted methods and SimoBarticle Hydrodynamics,
Mathematical Models and Methods in Applied Scier@@y, 161-209, 1999.

Wendland, H. 1995. Piecewiese polynomial, positleénite and compactly supported
radial functions of minimal degreAdvances in computational Mathemat#&d):
389- 396.

97

98

8. APPENDIX: SPS Turbulence Model

This section provides a short overview of the LEfet Sub-Particle Scale (SPS)
turbulence model implemented in SPHysics. Thiskweas inspired by the pioneering
work of Lo & Shao (2002). For a detailed descaptiof turbulence and Large Eddy
Simulation (LES), the reader is referred to the pmhensive text by Pope (2000).

Large-eddy simulation (LES) for SPH

Large—eddy simulation (LES) is a numerical appro&mh modelling the effect of
turbulence. In mesh-based schemes, the prinadpal of LES is that the largest scales
of motion are resolved by the grid while motionstba scales that are smaller than the
grid aremodelledor represented by a Sub-Grid Scale (SGS) turbalemadel. Hence,
the larger scales are solved explicitly while th@SSmotions are modelled. The
physical reasoning behind this is that the mairrggreontaining scales are dependent
on the flow, while the smaller dissipative scalesmore straightforward to characterise
in terms of energy dissipation. This avoids havitog perform computationally
expensive Direct Numerical Simulation (DNS) caltwlas. However, there are still
some minimum requirements that an LES calculatiarstrmesolve 80% of the flow,
etc., (Pope 2000).

LES uses spatial filters in the surrounding gridiriolude the effect of the sub-grid
motions. This is based on the basic convolutieegral for a variable:

U (x.t)= [Glx-g)ule.t)de, (A1)

where is the spatially-filtered variable, is a position in spaceG is the filter function
(with characteristic lengtl\) which can be a variety of functions including axb
function or a Fourier filter performed in the freecy domain, etc. The analogies
between SPH and LES are clear and have been nptsl/bral researchers (Pope 2000,
Issa 2005, etc.). We can then decompose the #elogito the sum of the mean spatial
average and a spatial fluctuation

u=u+u, (A2)
such thatu' # 0.

In LES, the equations being solved are commonlhéincompressible Navier-Stokes
equations. However, in SPH we are using the coiyinequation for a slightly

compressible fluid to represent water, etc. Hemae are generally solving the
compressible Navier-Stokes equations. Here, fa pwesentation of LES-type
equations we use the standard tensor subscriptiorotaf i andj to denote coordinate
directions:

op 0)

It

1=0
ot ox (A3b)

99

0 0
E(pui)-l-&(pquj-l-pdu ‘Uij):fi (A3c)
]

0 0
a(pEi)-'-a(ﬂJjE_o}jui-'-Qj): fu; (A3d)
j

wherep is density,u; is the velocity in theq direction,p is pressureg; is the delta
function (3, ={1 i=j,0 %] }), E is the total energyg is a heat flux and the stress

Is given by

o, =245 _%/jdijsxk (A4)
And the strain rate tens& is given by by
1| du auj
= — |,
3 2(axj 0%,] (AS)

We are then ready to apply the LES filter in Equatjidf) above to each equation of
(A3) in turn. Since we are solving the compressidhvier-Stokes equations, we use

Favre-averaging,f = of /o, which avoids the generation of SGS terms in theréd
continuity equation. For the continuity and monuamtequations, this gives us

B9\

E-l-a_xj(puj)_o (A6a)
0 t)s 2 (o0 106 -5 200

a(pui)+a—xj(puuj+p5ij 5)=- (A6b)

j

where 7; are the Sub-Grid Scale (SGS) shear stresses tiisat feom the filtering
process and physically the represent the motiondbeurs on a scale smaller than the
grid spacing\x:

— [~~~ N
r; =-p(Gd, —ud,). (A7)
This SGS model then requires closure which is ndynexipressed as

fe~ T — g ~ _ ~ |2
L = _p(quj — Uy): PV (231 -£S49;)-%pC, Aza._j ‘S]‘ (A8)

Note that & does not represent turbulent stresses, but therefil laminar stress
components. The key part of any LES model is themiging a value for the turbulent
eddy viscosityy; which in SPHysics is achieved using a non-dynaBncagorinsky
model:

v, =(Caf[S|- (A9)
In order to solve the LES equations in SPH, we espin Lagrangian form:
dp _ _0q
dt P ox. (Al0a)
di, _ 1dp 10g; 107,

- -= -= (A10b)

dt pax, pox, pox

References

100

Issa, R.,Numerical assessment of the Smoothed Particle Hydiamics gridless
method for incompressible flows and its extensionturbulent flows Ph.D.
Thesis, University of Manchester Institute of Scerand Technology (UMIST),
2004.

Lo, E.Y.M. and Shao, S., Simulation of near-shooétary wave mechanics by an
incompressible SPH metho8lpplied Ocean Researchbd, 275-286, 2002.

Pope, S.B.Turbulent Flows Cambridge University Press, 2000.

101

9. PUBLICATIONS USING THE SPHysics CODE
Journal Papers

Dalrymple, R.A. and B.D. Rogers, "Numerical Modgliof Water Waves with the SPH
Method," Coastal Engineering, 53/2-3, 141-147, 2006

Crespo, A.J., M. GOmez-Gesteira, and R.A. DalrymplBoundary Conditions
Generated by Dynamic Particles in SPH Methods”, Cl@G@mputers, Materials, &
Continua5, 3, 173-184, 2007.

GOmez-Gesteira, M., D. Cerquiero, A.J.C. Crespo Rral Dalrymple, "Green Water
Overtopping Analyzed with an SPH Model," Ocean Begring, 32, 2, 223-238,
2005.

GoOmez-Gesteira, M., R.A. Dalrymple, A.J.C. Crespod D. Cerquiero, "Uso de la
Tecnica SPH para el Estudio de la Interaccion edtas y Estructuras,” Ingenieria
del Agua, 11, 2, 2004.

GOmez-Gesteira, M. and R.A. Dalrymple, "Using a SPH Method for Wave Impact
on a Tall Structure). Waterways, Port, Coastal, Ocean Engineeritf®f), 2, 63-69,
2004.

Crespo, A.J.C., M. Gbmez-Gesteira, and R.A. Daltgmi{8D SPH Simulation of large
waves mitigation with a dike”, Journal of HydrauResearch45, 5, 631-642, 2007.
Crespo, A.J.C., M. GOmez-Gesteira, and R.A. DaltgnpgModeling Dam Break
Behavior over a Wet Bed by a SPH Technigueyrnal of Waterway, Port, Coastal

and Ocean Engineering 34(6), 3131320, 2008.

M. Gomez-Gesteira, B. D. Rogers, R. A. Dalrympld anJ.C. Crespo, " State of the art
of classical SPH for free-surface flowsJournal of Hydraulic Researchn Press,
2010.

M. GOmez-Gesteira, B. D. Rogers, D. Violeau, J.®fassa and A.J.C. Crespo, " SPH
for free-surface flows"Journal of Hydraulic Researglin Press, 20010.

M. S. Narayanaswamy, A.J.C. Crespo, M. Gomez-Gestaid R. A. Dalrymple, "
SPHysics-Funwave hybrid model for coastal wave agepion”, Journal of
Hydraulic Researchin Press, 2010.

Rogers, B.D., Dalrymple, R.A., Stansby, P.K., Siatioin of caisson breakwater

movement using SPHpurnal of Hydraulic Researclin Press, 2010.

Conference Proceedings

Crespo, A.J., M. Gomez-Gesteira, and R.A. Dalrymf\éorticity Generated By A
Dam Break Over A Wet Bed Modeled By Smoothed Partldydrodynamics”,
Proceedings of 32nd Congress of IAHR, the Inteomati Association of Hydraulic
Engineering & Research, CORILA, 2007.

Dalrymple, R., B.D. Rogers, M. Narayanaswamy, Su,Ad. Gesteira, A.J.C. Crespo
and A. Panizzo, “Smoothed Particle HydrodynamicsVfater Waves”, Proceedings

102

of the 26th International Conference on OffshorecMaics and Artic Engineering,
ASME, 2007.

Rogers, B.D. and R.A. Dalrymple, "Three-DimensioB&H-SPS Modeling of Wave
Breaking", Symposium on Ocean Wave Measurements and An&#E;, Madrid,
2005.

Dalrymple, R.A., "New Technology: SPH for CoasRibcessesKeynote Address,
Symposium on Ocean Wave Measurements and An&$€E;, Madrid, 2005.

Narayanaswamy, M. and R.A. Dalrymple, "A Hybrid Beinesg and SPH Model for
Forced Oscillations",Symposium on Ocean Wave Measurements and Analysis,
ASCE, Madrid, 2005.

Rogers, B.D. and R.A. Dalrymple, "SPH Modeling afe&king Waves"Proc. 29th
Intl. Conference on Coastal Engineering, LisbonsM/8cientific Press, 2004.

Book Chapters

Rogers, B.D. and R.A. Dalrymple, "SPH Modeling gluhamis”,Proc. Intl. Workshop
on Longwave Run-up, Advances in Coastal EngineeSeages, P.L.-F. Liu, ed.,
World Scientifidn Press2006.

Dalrymple, R.A., GOémez-Gesteira, M., Rogers, B.Banizzo, A., Zou, S., Crespo,
A.J.C., Cuomo, G., And Narayanaswamy, M., “SmodtRarticle Hydrodynamics
for Water Waves”jn Advances in numerical simulation of nonlineartevavaves,
Ma, Q. ed., World Scientific Publishing, 2009.

PhD Thesis

Shan Zou, Coastal Sediment Transport Simulation $woothed Particle
Hydrodynamics, Johns Hopkins University, 2007.

Crespo, A.J.C., Application of the Smoothed Paatidydrodynamics model SPHysics
to free-surface hydrodynamics, University of Vigo08

Narayanaswamy, M., A Hybrid Boussinesq SPH Wavep&yation Model with
Applications to Forced Waves in Rectangular Tankgmhns Hopkins University,
2008.

103

104

