
1

User Guide for parallelSPHYSICS v2.0 using MPI

January 2011

Abstract

The code parallelSPHysics has identical functionality as the serial SPHysics code but has been

design to perform simulations of millions of particles. The code is parallelised using the MPI

formalism, and thus requires MPICH or OpenMPI to be installed on your parallel machine.

Full information on the SPHysics code can be found in the guide for the serial code. This

document describes (i) how to run the parallel code on unix/linux-based operating systems, (ii)

the main changes from the serial code, (iii) the test cases which are the same as the serial code

but with more particles, and (iv) the performance which shows superlinear speedup up to 64

cores in 2-D and 48 cores in 3-D.

B.D. Rogers (benedict.rogers@manchester.ac.uk)

R.A. Dalrymple (rad@jhu.edu)

M. Gómez Gesteira (mggesteira@uvigo.es)

A.J.C. Crespo (alexbexe@uvigo.es)

2

3

Acknowledgements

The development and application of SPHysics were partially supported by:

- Xunta de Galicia under project PGIDIT06PXIB383285PR.

- Office of Naval Research, Geosciences Program

- EPSRC Project Grant GR/S28310

- ESPHI (An European Smooth Particle Hydrodynamics Initiative) project supported

by the Commission of the European Communities (Marie Curie Actions, contract

number MTKI-CT-2006-042350).

- Flood Risk Management Research Consortium (FRMRC) Phase 2, EPSRC Grant

F020511

- Research Councils UK (RCUK) Research Fellowship

4

CONTENTS

1. INTRODUCTION ... 5

1.1 Smoothed Particle Hydrodynamics and the need for hardware acceleration................... 5

1.2 The Structure of this Guide.. 5

2. HOW TO RUN THE CODE.. 7

2.1 Introduction.. 7

2.2. Installation.. 7

2.3. Program Outline.. 8

2.3.1. SPHYSICSgen ... 8

2.4 Generating the geometry.. 9

2.5 Compiling and Running the executable... 10

2.5.1 Submission script files (SGE & LSF systems) .. 11

2.5.2 Submitting consecutive jobs: Job dependencies and Checkpointing....................... 12

2.6 Extra Options in the CaseN.txt files for parallel code ... 13

3. CHANGES FROM SERIAL CODE... 14

3.1 Differences between the serial and parallel codes ... 14

3.2 Grid sweep ... 14

3.3 Differences in Naming Conventions.. 19

3.4 Storage of Particle Data on each Processor: varying particle numbers 19

3.5 Pointers .. 20

3.6 Boundary Particles ... 20

3.7 New Subroutines .. 21

3.8 Dynamic Load Balancing & MPI Toplogies (1-D, 2-D & 3-D).................................... 22

3.9 Choosing the Number of Processors: issues and advice.. 24

4. TEST CASES .. 25

4.1 Introduction.. 25

4.2 Test Case resolutions, particle numbers and Default processor numbers........................ 25

4.2.1 2-D Simulations ... 25

4.2.2 3-D Simulations ... 26

5. PERFORMANCE... 27

5.1 Performance of 2-D parallelSPHysics .. 27

5.2 Performance of 3-D parallelSPHysics .. 29

6. VISUALISATION .. 31

7. COMPLEX GEOMETRIES.. 31

7.1 Format of input files and Example Setup ... 31

8. FUTURE DEVELOPMENTS ... 32

9. REFERENCES.. 32

5

1. INTRODUCTION

1.1 Smoothed Particle Hydrodynamics and the need for hardware acceleration

Smoothed Particle Hydrodynamics (SPH) is revolutionising what can be simulated in both

fluid dynamics and solid mechanics due to its meshless nature. The method has opened up the

possibility of modelling phenomena that may exhibit highly nonlinear behaviour existing over

a range of time and length scales (see the 2010 Special Issue of Journal of Hydraulic Research

for a good overview of current activity in this field).

Despite the successes, as a methodology SPH suffers from numerous drawbacks. Perhaps one

of the most inhibiting has been the excessive runtimes. In 2-D each particle will interact with

maybe 50 particles that reside within its kernel, while in 3-D, this number can reach nearly 200

depending on the size of the smoothing length, use of adaptive kernels, etc. Due to the

restrictions to maintain accuracy within SPH, such as partition of unity, simulations of real

problems (i.e. anything other than toy problems) need a very large number of particles in the

region of many millions (10
6
 – 10

10
 particles). For a code that runs on a single processor (i.e. 1

CPU), this is completely unfeasible both in terms of memory required and the simulation

runtimes. Hence, the requirement for hardware-accelerated SPH codes has become an integral

part of the development of SPH as useful engineering simulation tool.

Numerous codes for running on parallel machines now exist. In this guide we present the user

instructions for the parallel version of SPHysics which has been developed for simulating free-

surface flows, specifically those encountered in coastal and shallow water hydrodynamics. The

nature of HPC is that the best performance can only be achieved with a code optimised to

individual architectures which was not the objective here, i.e. a portable parallel SPH code.

Note, parallelSPHysics has been tested up to 10
7
 particles and will not be able to simulate 10

10

particles.

1.2 The Structure of this Guide

As the functionality of the parallelSPHysics is the same as the serial code, all descriptions of

the theoretical basis are described in the main SPHysics user guide (Gomez-Gesteira et al.

2010). This guide is therefore structured as follows. First, in Chapter 2, we will describe how

to run the code on a unix/linux-based operating system, and then in Chapter 3 we describe the

main differences between the serial code and the new parallel code. In Chapter 4, we briefly

run through the test cases which are identical to the cases that come with the serial code, but

using a finer resolution, i.e. a larger number of particles. In Chapter 5, we describe the

performance of the parallel code in terms of speed up and efficiency. In Chapters 6, 7 & 8 we

describe visualisation (same as serial code), generating complex geometries in 2-D (new) and

future developments, respectively.

6

7

2. HOW TO RUN THE CODE

2.1 Introduction

Unlike the serial code, launching the parallel code will depend heavily on the architecture you

using. As mentioned in the abstract you will need either MPICH or OpenMPI installed in

order to run the MPI formalism (see http://www.mcs.anl.gov/research/projects/mpich2/ or

http://www.open-mpi.org/). The code has been developed with the assumption that most

parallel environments are not using Windows, but are running a linux/unix operating system

(see Top 500 HPC Machines: http://news.bbc.co.uk/1/hi/technology/10187248.stm).

For the installation of the code, some information is repeated here from the serial version of the

code.

2.2. Installation

Two versions of SPHysics are available in this release:

- parallelSPHysics_2D. The computational domain is considered to be 2D, where x

corresponds to the horizontal direction and z to the vertical direction.

- parallelSPHysics_3D. The computational domain is fully 3D, x and y are the

horizontal directions and z the vertical direction.

SPHysics is distributed in a compressed archive (.zip). Decompress each archive in the desired

location.

The directory tree shown in Figure 3.1 in the serial SPHysics guide (Gomez-Gesteira et al.

2010) can be observed after uncompressing the distributed compressed files (.zip).

In that figure, the following directories can be observed both in 2D and in 3D.

source contains the FORTRAN codes. This directory contains two subdirectories:

SPHysicsgen: contains the FORTRAN codes to create the initial conditions of the run.

SPHysics: contains the FORTRAN source codes of SPH.

execs contains all executable codes.

run_directory is the directory created to run the model. The different subdirectories Case1,

…, CaseN placed in this directory correspond to the different working cases to be created

by the user. Input and output files are written in these directories

Post-Processing this directory contains codes to visualize results (copy files from here to

the working Case directory for visualisation).

8

2.3. Program Outline

Both the 2D and 3D version consist of two programs, which are run separately and in the

following order.

2D Code:

SPHYSICSgen_2D: Creates the initial conditions and files for a given case.

SPHYSICS_2D: Runs the selected case with the initial conditions created by

SPHYSICSgen_2D code.

3D Code:

SPHYSICSgen_3D: Creates the initial conditions and files for a given case.

SPHYSICS_3D: Runs the selected case with the initial conditions created by

SPHYSICSgen_3D code.

In general, 2D or 3D appended to the source file name means that the source is suited for 2D or

3D calculations.

In the remainder of this document, SPHYSICSgen and SPHysics, when used, refer to both the

aforementioned 2D and 3D programs for convenience. For example, SPHYSICSgen will refer

to both SPHYSICSgen_2D and SPHYSICSgen_3D.

2.3.1. SPHYSICSgen

All subroutines are included in two source files (SPHYSICSgen_2D.f or SPHYSICSgen_3D.f),

depending on the nature two or three- dimensional of the calculation. Each source uses a

different common file, where most of the variables are stored. The common files are

common.gen2D (in 2D) and common.gen3D (in 3D). Both versions (2D and 3D) can be

compiled by the user with any FORTRAN compiler and the resulting executable file is placed

in subdirectory \execs.

SPHYSICSgen plays a dual role: (i) Creating the MAKEFILE to compile SPHysics; and (ii)

Creating the output files that will be the input files to be read by SPHysics. These files contain

information about the geometry of the domain, the distribution of particles and the different

running options.

For example, SPHYSICSgen can be executed using one of the following two commands:

 1. SPHYSICSgen < input_file

input_file is the general name (any name can be used) of the file containing the running options.

Different examples of input_file will be shown in next section.

9

 2. SPHYSICSgen

In this case, data about the run must then be provided by the user by means of the keyboard

and the information about the run appears on the screen. This option can be used by beginners

to get familiarized with the different options.

2.3.1.1. Creating compiling options

The compilation of SPHysics code depends on the nature of the problem under consideration

and on the particular features of the run. Thus, the user can choose the options that are better

suited to any particular problem and only those options will be included in the executable

versions of SPHysics. This protocol speeds up calculations since the model is not forced to

make time consuming logical decisions (i.e. if statements) – see Section 3.2 of the main guide

(Gomez-Gesteira 2010). There are only two new options to choose the MPI FORTRAN

compiler and whether to activate optimization of the MPI partitioning (i.e. load balancing)

which are described in Section 2.6.

2.3.1.2 Output files from SPHYSICSgen identical to serial code

The same identical output files are generated in SPHYSICSgen as for the serial code version

with a few extra files for the parallel code. The identical files are: SPHYSICS.mak, INDAT,

IPART, matlabin, NORMALS, OBSTACLE, WAVEMAKER, GATE, Tsunami_Landslide.txt,

Floating_Bodies.txt. The reader is referred to the serial guide for the content of these files

2.3.1.3 Output files from SPHYSICSgen solely for parallel code

The extra files are MPI_container_Limits.txt and BoundaryPs_MPI_Pointer.init.

As we mentioned above, different output files are created by SPHYSICSgen. These files can be

used either by the SPHysics executable as input files or by MATLAB codes to visualize results

(different MATLAB codes are provided in /Post-processing subdirectory).

2.4 Generating the geometry

In a change to the serial code, the geometry is first generated separately from the launching of

the parallel code.

Change to the run_directory/CaseN/ of the case you would like to run.

At the command prompt, for gfortran enter:
./CaseNgen_unix_gfortran.bat

or for the Intel compiler, enter:

./CaseNgen_unix_ifort.bat

See also the complex 2-D geometry generator in Section 7.

10

2.5 Compiling and Running the executable

This part will depend heavily on your parallel architecture. The code has been developed on

machines that use the LSF (Load Sharing Facility) and the SGE Submission systems. At

present, the information to run parallel jobs on other environments is not known. However,

you can use the “CaseN_unix.bat” files as an example batch submission file which you can

then alter to your system (see your system administrator).

In each “CaseN_unix.bat” file, there is a choice of batch submission files or interactive job

submission. You must comment/uncomment the batch file appropriately to select each one.

With the code the script files: script_bsub.bsub and script_qsub.qsub have been

provided for the LSF and SGE Submission systems, respectively. An example

“Case3_unix.bat” file is below which has the default option of submitting using the SGE

system:

UDIRX=`pwd`

if [$? -eq 0]; then

 SPHYSICSgen_Done="yes"

 echo 'SPHYSICSgen_Done = ' $SPHYSICSgen_Done

 rm SPHYSICS_2D

 cp SPHYSICS.mak ../../source/SPHYSICS2D/

 cd ../../source/SPHYSICS2D

 pwd

 ## - Uncomment following line for quicker repeated compilation -

 make -f SPHYSICS.mak clean

 make -f SPHYSICS.mak

 if [$? -eq 0]; then

 echo ' '

 SPHYSICScompilationDone="yes"

 echo 'SPHYSICScompilationDone = ' $SPHYSICScompilationDone

 echo ' '

 rm SPHYSICS.mak

 cd $UDIRX

 #rm PART_*

 rm DETPART_*

 rm sph.out sph.error

 rm MPI_Partition_Positions.dat

 pwd

 cp ../../execs/SPHYSICS_2D ./

 ## Comment out the following lines as necessary depending on your architecture

 ## DON'T SELECT INTERACTIVE AT SAME TIME AS A BATCH SUBMISSION SYSTEM BELOW

 ## LSF Submission system

 ## - Interactive MPI execution -

 #prun -p login -n 4 -B 4 ./SPHYSICS_2D

 #

 ## - Batch Submission execution -

 #bsub < script_bsub.bsub

 ## SGE Submission system

 ## - Interactive MPI execution -

 #qsub -I -l nodes=4 ./SPHYSICS_2D

 ##

11

 ## - Batch Submission execution -

 qsub script_qsub.qsub

 else

 rm SPHYSICS.mak

 cd $UDIRX

 echo ' '

 echo 'SPHYSICS_2D compilation failed'

 echo 'Make sure correct compiler is selected in Case file'

 fi

else

 cd $UDIRX

 echo ' '

 echo 'SPHYSICSgen failed'

fi

To compile and run the code using this file, at the command prompt enter:

./Case3_linux.bat

In this particular case, the SGE system will be used (invoked by the qsub script_qsub.qsub

command).

Above is an example (rendered inactive by using the script comment sign #) for interactive

submission enabled for LSF for 4 processors (-n 4) and will log into node 4 in order to launch

(-B 4).

2.5.1 Submission script files (SGE & LSF systems)

(i) SGE submission script (script_qsub.qsub)

Here is an example submission script for the SGE system which will submit a job to a queue

called ‘parallel’ with 64 cores (processors) and will called the job SPHysics_2D and write all

output to a file called ‘sph.out’ with a file for error messages called ‘sph.error’:

#!/bin/bash

-- the job is located in the current working directory :

#$ -cwd

-- shell

#$ -S /bin/bash

-- specify the queue

#$ -q mpich.q

-- specify how many parallel processes I want :

Default

option

12

#$ -orte.pe mpich 64

#$ -o sph.out

#$ -e sph.error

mpirun -np 64 ./SPHYSICS_2D

This script should be called script_qsub.qsub and submitted using the command as used

above in the “Case3_unix.bat” file above:

qsub script_qsub.qsub

(ii) LSF submission script (script_bsub.bsub)

Here is an example submission script for the LSF system which will submit a job to a queue

called ‘parallel’ with 32 cores (processors) with a maximum wall clock time of 23 hours 59

minutes and will called the job SPHysics_2D and write all output to a file called ‘sph.out’

with a file for error messages called ‘sph.error’:

#BSUB -n 32

#BSUB -W 23:59

#BSUB -o sph.out

#BSUB -e sph.error

#BSUB -q parallel

#BSUB -J SPHysics_2D

#BSUB -B

prun -n 32 ./SPHYSICS_2D

This script should be called script_bsub.bsub and submitted using the command as used

above in the “Case3_unix.bat” file above:

bsub < script_bsub.bsub

2.5.2 Submitting consecutive jobs: Job dependencies and Checkpointing

Many parallel (supercomputing) clusters set a maximum wall-clock time limit for each job (e.g.

24 hours). In order to run a simulation that requires more than the wall-clock time limit,

multiple submission scripts should be used with consecutive job dependencies, i.e. the

submission of one script depends on the successful completion of a previous job. We do not

describe this here, but we do point out that SPHysics does have the capability for

checkpointing (i.e. multiple restarts) as an option in SPHYSICSgen for both the serial and

parallel codes. For restarts the code uses new files generated during the running of the parallel

SPHysics code: NORMALS.RESTART, Floating_bodies.RESTART and

BoundaryPs_MPI_Pointer.RESTART.

13

2.6 Extra Options in the CaseN.txt files for parallel code

There are now three more options for running the code needed by the generation program

SPHYSICSgen_2D/3D.f and the compiler chosen must be mpif90. These extra options are

added only at the end of each CaseN.txt file.

Choice of compiler, i_compile_opt (5=mpif90), has been changed so that you can select

mpif90. There is no other option in contrast to the serial code.

(i) Choice of MPI Cartesian Topology, MPI_CartDims.

For 2-D, there is the option of 1- and 2-dimensional topologies.

For 3-D, there is the option of 1-, 2- and 3-dimensional topologies.

(ii) Choice of automatic domain decomposition, MPI_AutoDomainProcs (1=automatic,

0=manual), AND if manual is chosen the number of processors in each topological direction

must be specified, i.e. n_procs_x0, n_procs_z0

(iii) Choice of using adaptive MPI topology, i_MPI_Adapt (1=yes), with three parameters:

nFP_difference_max, n_itime_Adapt, n_ini_Adapt:

nFP_difference_max = maximum difference in number of fluid particles between adjacent

processors (default = 200)

n_itime_Adapt = number of timesteps when the position of the MPI partitions are checked

to be moved, etc. (default = 500)

n_ini_Adapt = number of occasions when the position of the MPI partitions are checked to

be moved, during initial optimisations before run starts (default = 5000)

These options are included in the extra input file “MPI_container_Limits.txt” whose

contents are:

iCartTop_periodicity

xb_min,xb_max

yb_min,yb_max

zb_min,zb_max

i_MPI_Adapt, nFP_difference_max, n_itime_Adapt, n_ini_Adapt
nbfm

MPI_CartDims

MPI_AutoDomainProcs, n_procs_x0, n_procs_z0

There now follows a brief outline of the how the simulation is parallelised along with structural

changes to the code.

14

3. CHANGES FROM SERIAL CODE

3.1 Differences between the serial and parallel codes

All efforts have been made to minimise the difference between the serial and parallel codes. A

number of new subroutines are necessary to deal with the transfer of particles and their

information between adjacent processors detailed below. The main difference is that the MPI

topology must be accessible by each subroutine (i.e. rank, east & west neighbours, MPI

communicator, etc.).

Some of this has been explained in Rogers et al. (2007).

3.2 Grid sweep

The serial SPHysics code in 2-D sweeps through the grid along the x-direction and for z-level.

Around each cell, the E, N, NW & NE neighbouring boxes are checked to minimise repeating

the particle interactions. This process is shown schematically in Figure 3.1.

ncx boxes

N NE NW

E ii
ncz boxes

Figure 3.1: 2h grid sweep in serial SPHysics

This provides an efficient method of identifying the connectivity of the particles with each

other.

15

To parallelise the code, the workload needs to be distributed amongst the available processors.

Figure 3.2 displays a typical situation where the domain has been split amongst three different

processors.

ncx_local boxes

processor n processor n+1 processor n-1

ncx_local boxes ncx_local boxes

Figure 3.2: Domain decomposition in parallel SPHysics

However, when the domain is split up amongst several processors and box ii is located on the

boundary of the processor, the code needs to know the contents of box-position ii+1, i.e. E &

NE which lie on a different processor. The easiest method to accomplish the necessary transfer

of information is to use a column of ghost cells of width 2h as shown in Figure 3.3.

processor n

processor n+1 processor n-1

Ghost cells Ghost cells

Transfer of

particle data

Transfer of

particle data

Figure 3.3: Importing particle information into ghost cells from neighbouring processor.

16

N NE NW

E ii

Column ncx-1

On processor n

Ghost Column 1

from processor n+1

ncz boxes

Figure 3.4: Local neighbours of 2h box ii in serial code

Continuing with this approach means that for a 2h cell, jj, on the adjacent processor n+1, all the

information from column ncx-1 from processor n must be imported into the ghost column 1 of

processor n+1 as shown in Figure 3.5.

N NE NW

E jj

Column 2

On processor n+1

Ghost Column ncx-1

from processor n

Figure 3.5: Local neighbours of 2h box jj on boundary of rank using serial code sweeping

17

Thus, for parallel cases whose predominant dimension is in the x-direction like many of the

cases simulated in our flows there appears to be wasted communication in the left-to-right

direction since if the instead the SE cell was searched rather than the NW cell during the grid

sweep as shown in Figure 3.6, then there would be no requirement to send data from processor

n to processor n+1 to perform the particle interactions. Only at the end of the summation

process would communication be needed from processor n to processor n+1 to complete the

sum that has been done partly on both processes.

N NE

SE

E jj

Column 2

On processor n+1

Ghost Column ncx-1

from processor n

Figure 3.6: Local neighbours of 2h box ii in parallel code

This leads to a considerable speed up. In summary, the process communication process is

handled as depicted in Figure 3.7:

18

(i) First part of each step:

processor n

processor n+1

processor n-1

Ghost cells

Ghost cells

Transfer of

particle data

Transfer of

particle data

Perform partial summations on each processor, and then …

(ii) … Second part of step

processor n

processor n+1

processor n-1

Ghost cells

Ghost cells

Transfer of partial

summations

Transfer of partial

summations

Sum both partial summations for each processor,

Figure 3.7: Summation and communication procedure

19

For the case of 3-D, the sweeps through the 2h grid change as shown in Figure 3.8.

Layer n

Layer n+1

Layer n

Layer n+1

Layer n-1

(a) serial code (b) parallel code

Figure 3.8: Change of 3-D sweeping through 2h grid

Similar operations can be performed in the North-South & Up-Down communications.

3.3 Differences in Naming Conventions

The subroutines most affected by parallelisation are getdata, step and ac. To distinguish

the parallel code from the serial version, many variables that are local to each processor have

the ending “_local” added, e.g. the number of particles np is a global variable, but the

number of particles on a single processor is np_local.

All subroutines now also contain the string _MPI in their title to differentiate them from the

serial code versions, e.g.

Serial Code subroutine: getdata_2D.f

Parallel Code subroutine: getdata_MPI_2D.f

3.4 Storage of Particle Data on each Processor: varying particle numbers

Each processor contains a different number of particles that varies over the duration of the

simulation. This means that a fixed array list and dimension is impossible. This situation is

made more complicated by the presence of a different number of ghost particles each timestep.

Such a situation requires the use of a flexible accounting system. Rather than reordering each

20

timestep, which is costly and unnecessary, the straightforward approach is to use pointers.

When particles leave a processor, an array keeps track of empty locations,

iarray_loc_in_use. Then when new particles enter the processor, the spare places in the

array are used before adding to the end of array using pointers: iBPs_top_free_index,

iFPs_top_free_index. Guest particles which lie in the ghost cells are stored in the array

space immediately after the resident particles, and hence is a temporary storage area that is

overwritten each timestep.

3.5 Pointers

An array pointer is used to point to the correct area in memory where the particle resides.

Different pointers are used for different types of particles (e.g. fluid particles

(ip_index_FP_local).

Each particle has been assigned a type to identify its function with a pointer as shown in Table

3.1:

Do-loop indices:

Particle

Type
Value of array

i_particleType
Pointer Array Resident Particles

on processor

Resident Particles +

Guest Particles = Image

Stationary

Boundary

Particle

1 ip_index_BP_local_1 1 : nbf_local
nbf_local + 1 :

nbf_local_image

Forced-

motion

Boundary

Particle

2 ip_index_BP_local_2
nbf_local+1 :

nbfm_local

nbf_local_image+1 :

nbfm_local_image

Free-

motion

Boundary

Particle

3 ip_index_BP_local_3
nbfm_local+1 :

nbfree_local

nbfm_local_image+1 :

nbfree_local_image

Fluid

Particle
4 ip_index_FP_local

nbp1_local :

np_local

nbp1_local_image :

np_local_image

Table 3.1 - Pointers used in parallel code for varying particle numbers

3.6 Boundary Particles

Boundary particles represent a slightly difficult problem since while they can be considered to

be disordered, their explicit connectivity needs to be known when calculating boundary surface

normals. To calculate boundary surface normals requires the knowledge of the local boundary

shape (which for the case of moving or deforming boundaries may not always be static or

known a priori). Therefore, the approach taken herein was to keep an array on the root

processor that stores the positions of immediately adjacent boundary particles. This list is then

broadcast to all other processors. When there is a moving boundary, this list is updated

21

accordingly and again broadcast. This is especially important when a moving object stretches

over the interface between two processors and the local connectivity needs to be known in

order to calculate the new boundary normal.

3.7 New Subroutines

For a particle that lies within a 2h box adjacent to the processor boundary, this requires

summations that include particles on an adjacent processor

In order to transfer information between processors, additional subroutines have been written.

The subroutines are the same in 2-D and 3-D. Here, they are explained for 2-D.

Subroutine Purpose
Identify_Ps_for_Exporting_toWest_MPI_2D.f

Identify_Ps_for_Exporting_toBelow_MPI_2D.f

Identifies the particles that lie within

2h of adjacent processors

SendRecv_Data_toWest_MPI_2D.f

SendRecv_Data_Conservative_toWest_MPI_2D.f

SendRecv_KGC_Matrices_toWest_MPI_2D.f

SendRecv_MLS_Matrices_toWest_MPI_2D.f

SendRecv_filteredDensities_toWest_MPI_2D.f

&

SendRecv_Data_toBelow_MPI_2D.f

SendRecv_Data_Conservative_toBelow_MPI_2D.f

SendRecv_KGC_Matrices_toBelow_MPI_2D.f

SendRecv_MLS_Matrices_toBelow_MPI_2D.f

SendRecv_filteredDensities_toBelow_MPI_2D.f

Sends all the relevant data of the

particles identified above to the

adjacent processors

update_MLS_Summations_fromWest_MPI_2D.f

update_KGC_Summations_fromWest_MPI_2D.f

update_Shepard_Summations_fromWest_MPI_2D.f

update_vorticity_Summations_fromWest_MPI_2D.f

update_accnSummations_fromWest_MPI_2D.f

update_accnSummations_Conservative_fromWest_MPI_2D.f

&

update_MLS_Summations_fromBelow_MPI_2D.f

update_KGC_Summations_fromBelow_MPI_2D.f

update_Shepard_Summations_fromBelow_MPI_2D.f

update_vorticity_Summations_fromBelow_MPI_2D.f

update_accnSummations_fromBelow_MPI_2D.f

update_accnSummations_Conservative_fromBelow_MPI_2D.f

After performing the summations on

each processor, the total summations

for particles within 2h of adjacent

processors must be collected together

and summed together

update_BPInfo_onRoot_MPI_2D.f

When the boundary particles move,

and possibly move from one

processor to another, their

connectivity on the root processor is

updated and the broadcast to all other

processors.
index_check_EastWest_MPI_2D.f

index_check_Conservative_EastWest_MPI_2D.f

&

index_check_UpDown_MPI_2D.f

index_check_Conservative_UpDown_MPI_2D.f

This is the key subroutine for

moving the particles from one

processor to another & is performed

at the end of each timestep.

ipcount_to_i_MPI_2D.f Converts a pointer to a specific index

22

(needed for variable particle

numbers).
Adapt_ini_MPI_2D.f Called from getdata to perform

initial load balancing optimization.
Adapt_MPI_Check_EastWest_MPI_2D.f

&

Adapt_MPI_Check_UpDown_MPI_2D.f

Called within index_check above,

if the moving water particles are not

evenly distributed across the

processors, then this subroutine will

change the location of the partitions

between each processor
Adapt_MPI_Regrid_MPI_2D.f

Called within index_check above

after Adapt_MPI_Check, this

subroutine then regrids the stationary

boundary particles if the location of

the partition between processors

changes.

For cases where only a 1-D dimensional topology is chosen, then the UpDown routines are

compiled using empty subroutines, e.g. SendRecv_Data_toBelow_NONE_MPI_2D.f

(similarly in 3-D).

3.8 Dynamic Load Balancing & MPI Toplogies (1-D, 2-D & 3-D)

When the domain is first initialised, unless the simulation is a simple rectangle completely full

of particles, the number of particles on each processor is highly unlikely to be equal. This is

particularly the case for domains such as a beach where there is a sloping beach where may of

the particles are concentrated offshore. Furthermore, once the simulation is in process, the

particles will be moving and so the number of particles allocated to each processor will change

during the simulation. Hence, some form of dynamic load balancing is required to maintain a

roughly equal number of particles on each processor.

In parallelSPHysics, there is a very basic form of load balancing which occurs at two times

during the simulation:

(i) Initially, before the simulation starts

(ii) Dynamically during the simulation

The main load balancing algorithm can be demonstrated for a 1-D Cartesian MPI topology.

Let nFP be the number of resident fluid particles on rank (processor) I, nFP,East be the number of

resident fluid particles on the East neighbour rank, and nFP,West the number of resident fluid

particles on the West neighbour rank. The partitions between the ranks (or individual

cores/processors) are moved according to the following conditions:

If (nFP,East - nFP,West) > nFP,difference max Move partition to the left by 2h

If (nFP,East - nFP,West)< -nFP,difference max Move partition to the right by 2h

23

During the simulation this procedure is repeated every n_itime_Adapt (default = 500)

timesteps. This is not every timestep as clearly this would be a waste of computational time,

checking this and performing the moving operation.

The example case shown of 2-D dam break in Figure 3.8 demonstrates that this can lead to a

40% increase in speedup. In Figure 3.8, we see the vertical black lines as the location of the

partition between processors. At the beginning of the simulation, each rank (processors) have

an equal length in frame 1. Then the dynamic load balancing equalises the number of particles

on each processor in frame 129 before the water starts to move. In Frames 616 & 988, as the

particles move rightward, the divisions between the processors moves to the right to keep the

number of particles on each processor approximately equal.

The initial positions and topological information for each processor is stored in the file

MPI_DomainProcs.txt and the domain decomposition after the initial optimisation called

from subroutine getdata is contained in the file MPI_Partition_init.txt.

The numbers of particles on each processor is written to a file
MPI_Partition_Positions.dat

(a) frame 1 (b) frame 129

(c) frame 616 (d) frame 988

Figure 3.8 Dynamic Load Balancing, black lines show spatial division between

processors

24

3.9 Choosing the Number of Processors: issues and advice

In the Case and script files there is the option to choose the MPI Cartesian topology (1, 2 or 3

dimensions) as well as the number of processors used within the simulation.

The following advice applies to both 2-D and 3-D since the code uses spatial domain

decomposition. There are two main issues:

(i) There will be a limit on how many processors should be used; this is due to the fact that for

all MPI-based codes the communication between processor cores becomes more and more

important as the number of processors are increased. When moving data between processors,

there are the combined issues of data travel time and synchronisation (or multi-threading).

Hence due to the time spent sending and receiving data between processor cores, above a

certain number of processors, there will be no gain in speedup and possibly even a reduction

when the time needed for data passing becomes prohibitive.

(ii) For SPH and spatial domain decomposition, the minimum width of each sub-domain

assigned to each processor core must be 6*h or greater (where h = smoothing length). This is

because there must be columns (or sheets) of width 2*h that need to be identified as interacting

with other sub-domains. Hence, if you prescribed n_procs_x processors in the x-direction

whose minimum combined length is n_procs_x *6*h and is larger than the domain length in

the x-direction, then some of these processors will be wasted.

Hence, taking into account these two factors, the performance curves shown later in Figures

5.1-5.4 will not continue to show near linear speedup and efficiency for increasing numbers of

processors and may even slow down.

Advice: For the parallelSPHysics code, the user is recommended to check the processor

numbers for each coordinate direction.

Note: The speedup when running the code elsewhere will depend strongly on the speed of

the interconnect between nodes and racks.

25

4. TEST CASES

4.1 Introduction

The test cases presented in this section are the same as those presented in the serial version of

SPHysics but here we use resolutions that generate far larger numbers of particles.

Note: All input Case files are the same as for the serial code except with 3 lines of extra

options at the end (see Section 2.6)

4.2 Test Case resolutions, particle numbers and Default processor numbers

4.2.1 2-D Simulations

The following table summarises the number of particles for each case:

Serial Code Parallel Code

Case Resolution

∆x (m)

Number of

Particles (np)

Resolution

∆x (m)

Number of

Particles (np)

Default

number of

processors

Case1.txt: 2D

Dam break in

a box

0.03 4920 0.03 4 920**

4

Case2.txt: 2D

Dam break

evolution over

a wet bottom

in a box

0.005 8022 0.00125* 113 780 8

Case3.txt:

Waves on a

beach

0.01 4063 0.0005 1 368 782 64

Case4.txt:

Tsunami

generated by a

sliding wedge

0.05 6604 0.0125 101 108 16

Case6.txt:

Floating boxes

in waves

0.01 5856 0.00125 338 073 32

Case7.txt:

Focused wave

group

approaching

trapezoid

0.02 8604 0.005 268 153 16

Case8.txt:

Floating

bodies with

2D

Periodicity

0.03 5583 0.01 43 200 6

Table 4.1 Test cases for parallelSPHysics 2D

26

* - Note nplink_max in common.2D must be changed to a value of 300 to cope with higher

resolution since gate particles finish one on top of another in same (x, z) location. This may

cause failure of the code to launch if the executable size is too large.

** - this case is chosen purposefully to be a very small particle number so that the user can

check easily that the code runs. There will be no observable speed up with such a small

problem.

As mentioned earlier, the test cases are the same and therefore use the same input CaseN.txt

files as the serial code but with two different inputs described in Section 2.6 to select the

mpif90 compiler and activate/deactivate the MPI optimisation.

4.2.2 3-D Simulations

In 3-D the resolutions and numbers of particles are given in Table 4.2 below:

Serial Code Parallel Code

Case Resolution

∆x (m)

Number of

Particles (np)

Resolution

∆x (m)

Number of

Particles (np)

Default

number of

processors

Case3.txt:

Waves on a

beach

0.01 79100 0.01*** 395 600 48

Case4.txt:

Tsunami

generated by a

sliding wedge

0.15 20713 0.05 523 122 48

Case5.txt: 3-D

only
0.0225 29814 0.00625 1 022 537 48

Case6.txt:

Floating boxes

in waves

0.02 11748 0.01 240 050 32

Case7.txt:

Focused wave

group

approaching

trapezoid

0.06 31974 0.02 690 818 36

Table 4.2 Test cases for parallelSPHysics 3D

*** - The domain is larger in the y-direction than for the serial code.

27

5. PERFORMANCE

5.1 Performance of 2-D parallelSPHysics

Here we show the speedup and efficiency of the parallelSPHysics code in 2-D. The problem

used is a simple 2-D rectangular basin of length 10m, water depth 1m with ∆x = 0.005m giving

approximately 400,000 particles. The timing runs have been conducted on Itanium2 processor

cores where each node is configured as a 4x Intel Itanium2 Montecito Dual Core 1.6GHz/8MB

cache (i.e. 8 cores per node) and 16GB RAM. Important: In these results each compute node

is connected via a high-bandwidth low-latency Sun Infiniband Switch which drastically

reduces the communication time between nodes, i.e. not a simple ethernet connection.

In all cases, the npar value in file common.2D was modified to give the smallest possible

value per processor while allowing the simulation to run.

The speedup of the code is defined by

NTTS 1= (5.1)

where T1 is the time taken for 1 processor and TN is the time taken using N processors. The

efficiency is defined as

NSE = (5.2)

and gives a measure of that includes the redundant calculations.

Figure 5.1 shows the speedup of the 2-D code up to 64 processors where it can be seen that the

code is super-linear, a behaviour which peaks around 16 processors and continues until 64

processors. This can be attributed to the optimisations made by the underlying compiler (Intel

ifort). This behaviour is confirmed by the efficiency in Figure 5.2.

NOTE: Choosing the number of processors is not as simple as specifying the maximum

number of processor available (see Section 3.9).

28

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

Number of Processors

S
p

e
e

d
u

p
 S

Ideal

parallelSPHysics

Figure 5.1 Speedup of parallelSPHysics_2D

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70

Number of Processors

E
ff

ic
ie

n
c
y
 E

Ideal

parallelSPHysics

Figure 5.2 Efficiency of parallelSPHysics_2D

29

5.2 Performance of 3-D parallelSPHysics

Here we show the speedup and efficiency of the parallelSPHysics code in 3-D. The problem

used is a simple 3-D rectangular basin of length 10m, width 0.4m, water depth 0.25m with ∆x

= 0.01m giving approximately 1.765 million particles. The timing runs have been conducted

on Itanium2 processor cores where each node is configured as a 6x Intel Itanium2 Dual Cores

with 1.6GHz/8MB cache (i.e. 12 cores per node) and 16GB RAM. In all cases, the npar value

in file common.3D was modified to give the smallest possible value per processor while

allowing the simulation to run.

The speedup of the code and efficiency of the code are defined by Equations (5.1 & 5.2).

Figure 5.3 shows the speedup of the 3-D code up to 48 processors using 1-D Cartesian

Topology where it can be seen that the code is super-linear, a behaviour which peaks around 16

processors and continues until 48 processors. This can be attributed to the optimisations made

by the underlying compiler (gfortran) and the fast interconnect. This behaviour is confirmed

by the efficiency in Figure 5.4.

As more and more processors are used, the communication becomes more important and its

effect slows down the wallclock time of parallel codes. As stated in the introduction, the

nature of HPC is that the best performance can only be achieved with a code optimised to

individual architectures whereas our objective was a portable parallel code. Here we have not

tested above 48 processors above which there is unlikely to be continued speed up.

NOTE: Choosing the number of processors is not as simple as specifying the maximum

number of processor available (see Section 3.9).

30

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

Number of Processors

S
p

e
e
d

u
p

 S

Ideal

parallelSPHysics

Figure 5.3 Speedup of parallelSPHysics_3D – 1-D Cartesian Topology

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70

Number of Processors

E
ff

ic
ie

n
c
y
 E

Ideal

parallelSPHysics

Figure 5.4 Efficiency of parallelSPHysics_3D – 1-D Cartesian Topology

Note: these performance curves will not continue to show near linear speedup and efficiency

for larger and larger numbers of processors – see discussion in Section 3.9.

31

6. VISUALISATION

To visualize the results obtained from SPHysics simulations, some basic post-processing

programs have been provided in the SPHysics_2D/Post-Processing and SPHysics-3D/Post-

Processing directories.

Detailed README files, explaining the procedure to view the results using Matlab and

Paraview, are available in those directories. The user is encouraged to read these README

files prior to using the visualization programs.

7. COMPLEX GEOMETRIES

To generate complex geometries, the user has different options in 2-D and 3-D.

For 3-D, the complex geometries can be generated using the Blender software from the serial

code. This functionality will be added to the 3-D parallel code in the future release 2.2)

For 2-D, there are now two new subroutines in SPHYSICSgen_2D.f called

external_geometry and ComplexObject_Particles which allow any number of

boundary shapes to be imported for both fixed and free-moving objects (the functionality for

moving the objects according to a predetermined motion will be added in a future release).

7.1 Format of input files and Example Setup

Each complex boundary is loaded in as a separate file containing only the sequential (x, z)

coordinates of the boundary seeding points. In the example

Case_withComplexBoundaries.txt, two files are loaded in, one for the beach profile with

a recurve wall (Beach_withRecurve.txt) and one for the ship hull in the shallow water

(ShipHull.txt) as shown in Figure 7.1. For the free-moving objects such as the hull, the

values of the object mass, moments of inertia must still be entered in the Case file.

32

Figure 7.1 Complex 2-D geometry with ship hull and recurve wall

8. FUTURE DEVELOPMENTS

At present the output is entirely ASCII, however, it is envisaged to add support for binary

formats, along with pre- and post-processing to the code as appropriate.

9. REFERENCES

Gómez-Gesteira, M., Rogers, B.D., Dalrymple, R.A., Crespo, A.J.C. and Narayanaswamy, M.,

2010, User Guide for the SPHysics Code v2.0, http://www.sphysics.org.

MPI, http://www.mcs.anl.gov/research/projects/mpi/ and http://www.mpi-forum.org/

MPICH Homepage: http://www.mcs.anl.gov/research/projects/mpich2/

OpenMPI: http://www.open-mpi.org/

Rogers B.D., Dalrymple R.A., Stansby P.K., Laurence D.R.P., Development of a parallel SPH

code for free-surface wave hydrodynamics, Proc. 2
nd

 International SPHERIC Workshop

Madrid May 2007, 111-114.

SPHysics code v2.0, http://www.sphysics.org.

33

