Difference between revisions of "Status of Donovan's conjecture"

From Block library
Jump to: navigation, search
Line 18: Line 18:
 
|-
 
|-
 
|Cyclic <math>p</math>-groups || <math>\mathcal{O}</math> || Yes || [[References|[Li96]]] ||
 
|Cyclic <math>p</math>-groups || <math>\mathcal{O}</math> || Yes || [[References|[Li96]]] ||
|-
 
|Abelian <math>2</math>-groups <math>P</math> such that <math>{\rm Aut}(P)</math> is a <math>2</math>-group || <math>\mathcal{O}</math> || Yes || || All blocks are nilpotent
 
 
|-
 
|-
 
|<math>C_2 \times C_2</math> || <math>\mathcal{O}</math> || Yes || [[References|[CEKL11]]] || Donovan's conjecture without CFSG, Puig using CFSG
 
|<math>C_2 \times C_2</math> || <math>\mathcal{O}</math> || Yes || [[References|[CEKL11]]] || Donovan's conjecture without CFSG, Puig using CFSG
Line 35: Line 33:
 
|Generalised quaternion <math>2</math>-groups || No || No || [[References|[Er88a], [Er88b]]] || Donovan's conjecture over <math>k</math> known if <math>l(B) \neq 2</math>
 
|Generalised quaternion <math>2</math>-groups || No || No || [[References|[Er88a], [Er88b]]] || Donovan's conjecture over <math>k</math> known if <math>l(B) \neq 2</math>
 
|-  
 
|-  
|Minimal nonabelian <math>2</math>-groups <math>\langle x,y:x^{2^r}=y^{2^r}=[x,y]^2=[x,[x,y]]=[y,[x,y]]=1 \rangle</math> || <math>\mathcal{O}</math> || No || [[References|[EKS12]]] || Additional assumptions on <math>\mathcal{O}</math>
+
|Minimal nonabelian <math>2</math>-groups <math>\langle x,y:x^{2^r}=y^{2^r}=[x,y]^2=[x,[x,y]]=[y,[x,y]]=1 \rangle</math> || <math>\mathcal{O}</math> || No || [[References|[EKS12]]] ||  
 +
|-
 +
|Metacyclic <math>2</math>-groups of nonmaximal class || <math>\mathcal{O}</math> || No || [[References|[Sa12b]]] || All blocks nilpotent
 
|}
 
|}

Revision as of 22:51, 8 October 2018

Peter Donovan

In this page we list cases where Donovan's conjecture is known to hold.

Donovan's conjecture by [math]p[/math]-group

Under-construction.png

In the following, the column headed Donovan's conjecture indicates whether the conjecture is known over [math]k[/math] or [math]\mathcal{O}[/math].

[math]p[/math]-groups Donovan's conjecture Puig's conjecture References Notes
Cyclic [math]p[/math]-groups [math]\mathcal{O}[/math] Yes [Li96]
[math]C_2 \times C_2[/math] [math]\mathcal{O}[/math] Yes [CEKL11] Donovan's conjecture without CFSG, Puig using CFSG
Abelian [math]2[/math]-groups [math]\mathcal{O}[/math] No [EEL18]
Abelian [math]3[/math]-groups No No [Ko03] Puig's conjecture known for principal blocks
Dihedral [math]2[/math]-groups [math]k[/math] No [Er87]
Semidihedral [math]2[/math]-groups [math]k[/math] No [Er88c], [Er90b]
[math]Q_8[/math] [math]\mathcal{O}[/math] No [Er88a], [Er88b], [HKL07], [Ei16]
Generalised quaternion [math]2[/math]-groups No No [Er88a], [Er88b] Donovan's conjecture over [math]k[/math] known if [math]l(B) \neq 2[/math]
Minimal nonabelian [math]2[/math]-groups [math]\langle x,y:x^{2^r}=y^{2^r}=[x,y]^2=[x,[x,y]]=[y,[x,y]]=1 \rangle[/math] [math]\mathcal{O}[/math] No [EKS12]
Metacyclic [math]2[/math]-groups of nonmaximal class [math]\mathcal{O}[/math] No [Sa12b] All blocks nilpotent