Difference between revisions of "M(32,51,16)"

From Block library
Jump to: navigation, search
(Created page with "{{blockbox |title = M(32,51,16) - <math>B_0(k(SL_2(8) \times A_5))</math> |image =   |representative = <math>B_0(k(SL_2(8) \times A_5))</math> |defect = (C2)%5E5|<ma...")
 
(Covering blocks and covered blocks)
 
(One intermediate revision by the same user not shown)
Line 37: Line 37:
 
Let <math>N \triangleleft G</math> with prime <math>p'</math>-index and let <math>B</math> be a block of <math>\mathcal{O} G</math> covering a block <math>b</math> of <math>\mathcal{O} N</math>.
 
Let <math>N \triangleleft G</math> with prime <math>p'</math>-index and let <math>B</math> be a block of <math>\mathcal{O} G</math> covering a block <math>b</math> of <math>\mathcal{O} N</math>.
  
If <math>b</math> is in M(32,51,16), then <math>B</math> is in M(32,51,16) or [[M(32,51,29]].
+
If <math>b</math> is in M(32,51,16), then <math>B</math> is in M(32,51,16) or [[M(32,51,29)]].
  
 
== Projective indecomposable modules ==
 
== Projective indecomposable modules ==
Line 43: Line 43:
 
Labelling the simple <math>B</math>-modules by <math>S_1, \dots, S_{21}</math>, the projective indecomposable modules have Loewy structure as follows:
 
Labelling the simple <math>B</math>-modules by <math>S_1, \dots, S_{21}</math>, the projective indecomposable modules have Loewy structure as follows:
  
<math>\begin{array}{cc}
+
<math>
 
\begin{array}{c}
 
\begin{array}{c}
 
S_{1} \\
 
S_{1} \\
Line 56: Line 56:
 
S_{4} S_{5} S_{2} S_{6} S_{3} \\
 
S_{4} S_{5} S_{2} S_{6} S_{3} \\
 
S_{1} \\
 
S_{1} \\
   \end{array}
+
   \end{array}</math> <math>
&
 
 
\begin{array}{c}
 
\begin{array}{c}
 
S_{2} \\
 
S_{2} \\
Line 71: Line 70:
 
S_{2} \\
 
S_{2} \\
 
   \end{array}
 
   \end{array}
\end{array}</math>
+
</math> <math>
 
 
<br>&nbsp;<br>
 
 
 
<math>\begin{array}{cc}
 
 
\begin{array}{c}
 
\begin{array}{c}
 
S_{3} \\
 
S_{3} \\
Line 89: Line 84:
 
S_{3} \\
 
S_{3} \\
 
   \end{array}
 
   \end{array}
&
+
</math> <math>
 
\begin{array}{c}
 
\begin{array}{c}
 
S_{4} \\
 
S_{4} \\
Line 103: Line 98:
 
S_{4} \\
 
S_{4} \\
 
   \end{array}
 
   \end{array}
\end{array}</math>
+
</math> <math>
 
 
<br>&nbsp;<br>
 
 
 
<math>
 
\begin{array}{cccc}
 
 
\begin{array}{c}
 
\begin{array}{c}
 
S_{5} \\
 
S_{5} \\
Line 122: Line 112:
 
S_{5} \\
 
S_{5} \\
 
   \end{array}
 
   \end{array}
&
+
</math> <math>
 
\begin{array}{c}
 
\begin{array}{c}
 
S_{6} \\
 
S_{6} \\
Line 136: Line 126:
 
S_{6} \\
 
S_{6} \\
 
   \end{array}
 
   \end{array}
&
+
</math> <math>
 
\begin{array}{c}
 
\begin{array}{c}
 
S_{7} \\
 
S_{7} \\
Line 150: Line 140:
 
S_{7} \\
 
S_{7} \\
 
   \end{array}
 
   \end{array}
&
+
</math> <math>
 
\begin{array}{c}
 
\begin{array}{c}
 
S_{8} \\
 
S_{8} \\
Line 164: Line 154:
 
S_{8} \\
 
S_{8} \\
 
   \end{array}
 
   \end{array}
   \end{array}
+
   </math> <math>
</math>
 
 
 
<br>&nbsp;<br>
 
 
 
<math>
 
\begin{array}{cccc}
 
 
\begin{array}{c}
 
\begin{array}{c}
 
S_{9} \\
 
S_{9} \\
Line 184: Line 168:
 
S_{9} \\
 
S_{9} \\
 
   \end{array}
 
   \end{array}
&
+
</math> <math>
 
\begin{array}{c}
 
\begin{array}{c}
 
S_{10} \\
 
S_{10} \\
Line 198: Line 182:
 
S_{10} \\
 
S_{10} \\
 
   \end{array}
 
   \end{array}
&
+
</math> <math>
 
\begin{array}{c}
 
\begin{array}{c}
 
S_{11} \\
 
S_{11} \\
Line 212: Line 196:
 
S_{11} \\
 
S_{11} \\
 
   \end{array}
 
   \end{array}
&
+
</math> <math>
 
\begin{array}{c}
 
\begin{array}{c}
 
S_{12} \\
 
S_{12} \\
Line 226: Line 210:
 
S_{12} \\
 
S_{12} \\
 
   \end{array}
 
   \end{array}
   \end{array}
+
   </math> <math>
</math>
 
 
 
<br>&nbsp;<br>
 
 
 
<math>
 
\begin{array}{cccc}
 
 
\begin{array}{c}
 
\begin{array}{c}
 
S_{13} \\
 
S_{13} \\
Line 246: Line 224:
 
S_{13} \\
 
S_{13} \\
 
   \end{array}
 
   \end{array}
&
+
</math> <math>
 
\begin{array}{c}
 
\begin{array}{c}
 
S_{14} \\
 
S_{14} \\
Line 260: Line 238:
 
S_{14} \\
 
S_{14} \\
 
   \end{array}
 
   \end{array}
&
+
</math> <math>
 
\begin{array}{c}
 
\begin{array}{c}
 
S_{15} \\
 
S_{15} \\
Line 274: Line 252:
 
S_{15} \\
 
S_{15} \\
 
   \end{array}
 
   \end{array}
&
+
</math> <math>
 
\begin{array}{c}
 
\begin{array}{c}
 
S_{16} \\
 
S_{16} \\
Line 288: Line 266:
 
S_{16} \\
 
S_{16} \\
 
   \end{array}
 
   \end{array}
  \end{array}
+
</math> <math>
</math>
 
 
 
<br>&nbsp;<br>
 
 
 
<math>
 
\begin{array}{ccccc}
 
 
\begin{array}{c}
 
\begin{array}{c}
 
S_{17} \\
 
S_{17} \\
Line 308: Line 280:
 
S_{17} \\
 
S_{17} \\
 
   \end{array}
 
   \end{array}
&
+
</math> <math>
 
\begin{array}{c}
 
\begin{array}{c}
 
S_{18} \\
 
S_{18} \\
Line 322: Line 294:
 
S_{18} \\
 
S_{18} \\
 
   \end{array}
 
   \end{array}
&
+
</math> <math>
 
\begin{array}{c}
 
\begin{array}{c}
 
S_{19} \\
 
S_{19} \\
Line 336: Line 308:
 
S_{19} \\
 
S_{19} \\
 
   \end{array}
 
   \end{array}
&
+
</math> <math>
 
\begin{array}{c}
 
\begin{array}{c}
 
S_{20} \\
 
S_{20} \\
Line 350: Line 322:
 
S_{20} \\
 
S_{20} \\
 
   \end{array}
 
   \end{array}
&
+
</math> <math>
 
\begin{array}{c}
 
\begin{array}{c}
 
S_{21} \\
 
S_{21} \\
Line 364: Line 336:
 
S_{21} \\
 
S_{21} \\
 
   \end{array}
 
   \end{array}
  \end{array}
+
  </math>
</math>
 
  
 
== Irreducible characters ==
 
== Irreducible characters ==

Latest revision as of 17:16, 8 December 2019

M(32,51,16) - [math]B_0(k(SL_2(8) \times A_5))[/math]
[[File: |250px]]
Representative: [math]B_0(k(SL_2(8) \times A_5))[/math]
Defect groups: [math](C_2)^5[/math]
Inertial quotients: [math]C_{21}[/math]
[math]k(B)=[/math] 32
[math]l(B)=[/math] 21
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math]  
Cartan matrix: See below.
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]B_0(\mathcal{O} (SL_2(8) \times A_5))[/math]
Decomposition matrices: See below.
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math]
[math]PI(B)=[/math]
Source algebras known? No
Source algebra reps:
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: M(32,51,13), M(32,51,14), M(32,51,15)
[math]\mathcal{O}[/math]-derived equiv. classes known? Yes
[math]p'[/math]-index covering blocks:
[math]p'[/math]-index covered blocks:
Index [math]p[/math] covering blocks:


Basic algebra

Other notatable representatives

Covering blocks and covered blocks

Let [math]N \triangleleft G[/math] with prime [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].

If [math]b[/math] is in M(32,51,16), then [math]B[/math] is in M(32,51,16) or M(32,51,29).

Projective indecomposable modules

Labelling the simple [math]B[/math]-modules by [math]S_1, \dots, S_{21}[/math], the projective indecomposable modules have Loewy structure as follows:

[math] \begin{array}{c} S_{1} \\ S_{5} S_{3} S_{6} S_{4} S_{2} \\ S_{1} S_{1} S_{1} S_{1} S_{1} S_{11} S_{14} S_{9} S_{13} S_{16} S_{15} S_{8} S_{10} S_{12} \\ S_{2} S_{4} S_{5} S_{5} S_{3} S_{4} S_{2} S_{4} S_{4} S_{6} S_{3} S_{2} S_{3} S_{2} S_{5} S_{5} S_{6} S_{3} S_{6} S_{6} S_{19} S_{7} S_{20} S_{18} S_{21} S_{17} \\ S_{1} S_{1} S_{1} S_{1} S_{1} S_{1} S_{1} S_{1} S_{1} S_{1} S_{11} S_{15} S_{9} S_{11} S_{12} S_{16} S_{8} S_{15} S_{12} S_{13} S_{10} S_{14} S_{15} S_{14} S_{16} S_{9} S_{9} S_{13} S_{13} S_{10} S_{12} S_{8} S_{8} S_{11} S_{14} S_{10} S_{16} \\ S_{6} S_{6} S_{4} S_{3} S_{3} S_{6} S_{5} S_{3} S_{6} S_{3} S_{3} S_{6} S_{6} S_{4} S_{2} S_{2} S_{4} S_{4} S_{4} S_{5} S_{5} S_{3} S_{5} S_{2} S_{2} S_{2} S_{2} S_{5} S_{5} S_{4} S_{7} S_{19} S_{7} S_{17} S_{18} S_{17} S_{20} S_{20} S_{21} S_{18} S_{19} S_{21} \\ S_{1} S_{1} S_{1} S_{1} S_{1} S_{1} S_{1} S_{1} S_{1} S_{1} S_{14} S_{15} S_{9} S_{10} S_{13} S_{13} S_{12} S_{8} S_{15} S_{13} S_{16} S_{10} S_{10} S_{16} S_{15} S_{8} S_{8} S_{12} S_{11} S_{9} S_{11} S_{14} S_{16} S_{9} S_{11} S_{12} S_{14} \\ S_{4} S_{2} S_{6} S_{5} S_{6} S_{4} S_{6} S_{2} S_{3} S_{3} S_{2} S_{6} S_{2} S_{5} S_{3} S_{4} S_{3} S_{5} S_{4} S_{5} S_{7} S_{18} S_{20} S_{19} S_{21} S_{17} \\ S_{1} S_{1} S_{1} S_{1} S_{1} S_{13} S_{9} S_{10} S_{8} S_{11} S_{12} S_{14} S_{15} S_{16} \\ S_{4} S_{5} S_{2} S_{6} S_{3} \\ S_{1} \\ \end{array}[/math] [math] \begin{array}{c} S_{2} \\ S_{1} S_{12} S_{16} S_{14} \\ S_{2} S_{4} S_{3} S_{5} S_{2} S_{2} S_{6} S_{20} S_{18} S_{7} \\ S_{1} S_{1} S_{1} S_{1} S_{8} S_{12} S_{14} S_{16} S_{15} S_{10} S_{12} S_{14} S_{13} S_{9} S_{16} S_{11} \\ S_{3} S_{4} S_{4} S_{4} S_{5} S_{5} S_{6} S_{6} S_{2} S_{2} S_{5} S_{2} S_{3} S_{6} S_{3} S_{2} S_{21} S_{18} S_{19} S_{7} S_{17} S_{20} \\ S_{1} S_{1} S_{1} S_{1} S_{1} S_{1} S_{13} S_{15} S_{9} S_{10} S_{8} S_{12} S_{15} S_{8} S_{9} S_{14} S_{12} S_{16} S_{16} S_{10} S_{13} S_{11} S_{11} S_{14} \\ S_{5} S_{6} S_{5} S_{2} S_{6} S_{2} S_{5} S_{4} S_{2} S_{4} S_{3} S_{3} S_{6} S_{3} S_{2} S_{4} S_{18} S_{21} S_{17} S_{20} S_{19} S_{7} \\ S_{1} S_{1} S_{1} S_{1} S_{10} S_{8} S_{14} S_{15} S_{14} S_{11} S_{13} S_{16} S_{9} S_{16} S_{12} S_{12} \\ S_{2} S_{6} S_{3} S_{5} S_{2} S_{2} S_{4} S_{20} S_{7} S_{18} \\ S_{1} S_{12} S_{14} S_{16} \\ S_{2} \\ \end{array} [/math] [math] \begin{array}{c} S_{3} \\ S_{1} S_{11} S_{15} S_{13} \\ S_{4} S_{3} S_{2} S_{5} S_{6} S_{3} S_{3} S_{19} S_{17} S_{21} \\ S_{1} S_{1} S_{1} S_{1} S_{16} S_{15} S_{14} S_{9} S_{11} S_{10} S_{12} S_{15} S_{11} S_{8} S_{13} S_{13} \\ S_{3} S_{6} S_{2} S_{5} S_{3} S_{5} S_{5} S_{2} S_{6} S_{3} S_{2} S_{4} S_{4} S_{6} S_{3} S_{4} S_{19} S_{18} S_{17} S_{7} S_{20} S_{21} \\ S_{1} S_{1} S_{1} S_{1} S_{1} S_{1} S_{10} S_{9} S_{10} S_{13} S_{13} S_{16} S_{11} S_{8} S_{12} S_{8} S_{12} S_{16} S_{15} S_{15} S_{11} S_{9} S_{14} S_{14} \\ S_{5} S_{6} S_{2} S_{5} S_{5} S_{3} S_{3} S_{3} S_{6} S_{2} S_{2} S_{4} S_{6} S_{4} S_{4} S_{3} S_{19} S_{21} S_{20} S_{17} S_{7} S_{18} \\ S_{1} S_{1} S_{1} S_{1} S_{9} S_{10} S_{11} S_{16} S_{14} S_{8} S_{15} S_{11} S_{13} S_{12} S_{15} S_{13} \\ S_{4} S_{2} S_{3} S_{5} S_{6} S_{3} S_{3} S_{17} S_{19} S_{21} \\ S_{1} S_{11} S_{15} S_{13} \\ S_{3} \\ \end{array} [/math] [math] \begin{array}{c} S_{4} \\ S_{1} S_{14} S_{8} S_{13} \\ S_{2} S_{4} S_{5} S_{6} S_{4} S_{3} S_{4} S_{7} S_{19} \\ S_{1} S_{1} S_{1} S_{1} S_{14} S_{12} S_{15} S_{11} S_{8} S_{16} S_{8} S_{13} S_{10} S_{14} S_{13} \\ S_{2} S_{2} S_{6} S_{6} S_{2} S_{4} S_{3} S_{6} S_{5} S_{3} S_{4} S_{5} S_{4} S_{3} S_{4} S_{5} S_{19} S_{7} S_{21} S_{18} \\ S_{1} S_{1} S_{1} S_{1} S_{1} S_{1} S_{14} S_{10} S_{13} S_{10} S_{15} S_{12} S_{13} S_{15} S_{11} S_{8} S_{8} S_{16} S_{16} S_{11} S_{12} S_{14} \\ S_{4} S_{4} S_{4} S_{2} S_{2} S_{3} S_{5} S_{3} S_{6} S_{4} S_{2} S_{5} S_{6} S_{5} S_{3} S_{6} S_{7} S_{21} S_{19} S_{18} \\ S_{1} S_{1} S_{1} S_{1} S_{12} S_{14} S_{15} S_{14} S_{16} S_{10} S_{8} S_{13} S_{13} S_{8} S_{11} \\ S_{4} S_{5} S_{4} S_{2} S_{3} S_{6} S_{4} S_{19} S_{7} \\ S_{1} S_{13} S_{14} S_{8} \\ S_{4} \\ \end{array} [/math] [math] \begin{array}{c} S_{5} \\ S_{1} S_{15} S_{9} S_{12} \\ S_{2} S_{6} S_{5} S_{5} S_{4} S_{5} S_{3} S_{20} S_{17} \\ S_{1} S_{1} S_{1} S_{1} S_{15} S_{13} S_{15} S_{9} S_{14} S_{9} S_{12} S_{8} S_{16} S_{12} S_{11} \\ S_{2} S_{2} S_{6} S_{6} S_{6} S_{3} S_{3} S_{5} S_{4} S_{5} S_{2} S_{4} S_{3} S_{5} S_{4} S_{5} S_{7} S_{17} S_{19} S_{20} \\ S_{1} S_{1} S_{1} S_{1} S_{1} S_{1} S_{12} S_{12} S_{14} S_{11} S_{13} S_{16} S_{14} S_{15} S_{8} S_{11} S_{15} S_{16} S_{9} S_{9} S_{13} S_{8} \\ S_{4} S_{2} S_{4} S_{5} S_{5} S_{4} S_{2} S_{2} S_{6} S_{5} S_{3} S_{3} S_{6} S_{5} S_{6} S_{3} S_{17} S_{20} S_{19} S_{7} \\ S_{1} S_{1} S_{1} S_{1} S_{13} S_{16} S_{15} S_{9} S_{14} S_{11} S_{12} S_{12} S_{9} S_{8} S_{15} \\ S_{5} S_{5} S_{2} S_{4} S_{5} S_{3} S_{6} S_{17} S_{20} \\ S_{1} S_{15} S_{12} S_{9} \\ S_{5} \\ \end{array} [/math] [math] \begin{array}{c} S_{6} \\ S_{1} S_{11} S_{10} S_{16} \\ S_{6} S_{6} S_{5} S_{4} S_{6} S_{2} S_{3} S_{18} S_{21} \\ S_{1} S_{1} S_{1} S_{1} S_{9} S_{13} S_{11} S_{16} S_{11} S_{16} S_{12} S_{10} S_{15} S_{14} S_{10} \\ S_{4} S_{4} S_{6} S_{5} S_{2} S_{6} S_{4} S_{5} S_{3} S_{6} S_{6} S_{2} S_{2} S_{3} S_{5} S_{3} S_{18} S_{20} S_{21} S_{17} \\ S_{1} S_{1} S_{1} S_{1} S_{1} S_{1} S_{16} S_{14} S_{13} S_{16} S_{10} S_{9} S_{10} S_{14} S_{12} S_{15} S_{13} S_{15} S_{9} S_{12} S_{11} S_{11} \\ S_{4} S_{2} S_{6} S_{6} S_{3} S_{2} S_{4} S_{3} S_{4} S_{5} S_{6} S_{5} S_{5} S_{6} S_{2} S_{3} S_{21} S_{20} S_{17} S_{18} \\ S_{1} S_{1} S_{1} S_{1} S_{12} S_{16} S_{16} S_{14} S_{15} S_{11} S_{13} S_{11} S_{9} S_{10} S_{10} \\ S_{5} S_{6} S_{6} S_{2} S_{3} S_{6} S_{4} S_{21} S_{18} \\ S_{1} S_{11} S_{16} S_{10} \\ S_{6} \\ \end{array} [/math] [math] \begin{array}{c} S_{7} \\ S_{8} S_{14} \\ S_{2} S_{4} S_{19} \\ S_{1} S_{13} S_{8} S_{12} \\ S_{2} S_{3} S_{4} S_{5} S_{7} \\ S_{1} S_{1} S_{15} S_{14} S_{14} \\ S_{5} S_{3} S_{4} S_{2} S_{7} \\ S_{1} S_{12} S_{8} S_{13} \\ S_{4} S_{2} S_{19} \\ S_{14} S_{8} \\ S_{7} \\ \end{array} [/math] [math] \begin{array}{c} S_{8} \\ S_{4} S_{19} S_{7} \\ S_{1} S_{8} S_{13} S_{8} S_{14} \\ S_{3} S_{4} S_{4} S_{2} S_{5} S_{7} S_{19} \\ S_{1} S_{1} S_{1} S_{14} S_{15} S_{8} S_{13} S_{12} \\ S_{5} S_{5} S_{4} S_{2} S_{4} S_{3} S_{2} S_{3} \\ S_{1} S_{1} S_{1} S_{14} S_{12} S_{13} S_{15} S_{8} \\ S_{4} S_{3} S_{2} S_{5} S_{4} S_{19} S_{7} \\ S_{1} S_{14} S_{13} S_{8} S_{8} \\ S_{4} S_{7} S_{19} \\ S_{8} \\ \end{array} [/math] [math] \begin{array}{c} S_{9} \\ S_{5} S_{17} S_{20} \\ S_{1} S_{12} S_{15} S_{9} S_{9} \\ S_{5} S_{5} S_{3} S_{2} S_{6} S_{20} S_{17} \\ S_{1} S_{1} S_{1} S_{12} S_{11} S_{9} S_{15} S_{16} \\ S_{3} S_{5} S_{2} S_{5} S_{3} S_{6} S_{6} S_{2} \\ S_{1} S_{1} S_{1} S_{15} S_{12} S_{16} S_{9} S_{11} \\ S_{5} S_{2} S_{6} S_{3} S_{5} S_{17} S_{20} \\ S_{1} S_{9} S_{9} S_{15} S_{12} \\ S_{5} S_{17} S_{20} \\ S_{9} \\ \end{array} [/math] [math] \begin{array}{c} S_{10} \\ S_{6} S_{18} S_{21} \\ S_{1} S_{10} S_{10} S_{16} S_{11} \\ S_{3} S_{2} S_{4} S_{6} S_{6} S_{18} S_{21} \\ S_{1} S_{1} S_{1} S_{10} S_{13} S_{11} S_{16} S_{14} \\ S_{2} S_{3} S_{3} S_{2} S_{4} S_{4} S_{6} S_{6} \\ S_{1} S_{1} S_{1} S_{11} S_{13} S_{14} S_{10} S_{16} \\ S_{3} S_{4} S_{6} S_{2} S_{6} S_{18} S_{21} \\ S_{1} S_{10} S_{16} S_{11} S_{10} \\ S_{6} S_{18} S_{21} \\ S_{10} \\ \end{array} [/math] [math] \begin{array}{c} S_{11} \\ S_{3} S_{6} S_{21} \\ S_{1} S_{11} S_{15} S_{13} S_{10} S_{16} \\ S_{5} S_{3} S_{2} S_{4} S_{6} S_{6} S_{3} S_{18} S_{17} \\ S_{1} S_{1} S_{1} S_{9} S_{14} S_{11} S_{15} S_{12} S_{16} S_{13} S_{10} S_{11} \\ S_{4} S_{3} S_{6} S_{5} S_{3} S_{5} S_{2} S_{6} S_{4} S_{2} S_{20} S_{21} S_{21} \\ S_{1} S_{1} S_{1} S_{11} S_{16} S_{10} S_{14} S_{12} S_{9} S_{13} S_{11} S_{15} \\ S_{6} S_{2} S_{6} S_{5} S_{4} S_{3} S_{3} S_{18} S_{17} \\ S_{1} S_{16} S_{15} S_{10} S_{11} S_{13} \\ S_{6} S_{3} S_{21} \\ S_{11} \\ \end{array} [/math] [math] \begin{array}{c} S_{12} \\ S_{2} S_{5} S_{20} \\ S_{1} S_{14} S_{16} S_{15} S_{12} S_{9} \\ S_{5} S_{2} S_{6} S_{2} S_{4} S_{3} S_{5} S_{17} S_{7} \\ S_{1} S_{1} S_{1} S_{15} S_{12} S_{16} S_{11} S_{8} S_{13} S_{14} S_{9} S_{12} \\ S_{4} S_{4} S_{2} S_{6} S_{5} S_{3} S_{5} S_{2} S_{6} S_{3} S_{20} S_{19} S_{20} \\ S_{1} S_{1} S_{1} S_{11} S_{9} S_{12} S_{13} S_{15} S_{8} S_{16} S_{14} S_{12} \\ S_{5} S_{3} S_{5} S_{4} S_{6} S_{2} S_{2} S_{17} S_{7} \\ S_{1} S_{14} S_{9} S_{12} S_{15} S_{16} \\ S_{5} S_{2} S_{20} \\ S_{12} \\ \end{array} [/math] [math] \begin{array}{c} S_{13} \\ S_{3} S_{4} S_{19} \\ S_{1} S_{13} S_{11} S_{15} S_{8} S_{14} \\ S_{6} S_{3} S_{2} S_{5} S_{4} S_{3} S_{4} S_{7} S_{21} \\ S_{1} S_{1} S_{1} S_{10} S_{15} S_{13} S_{16} S_{12} S_{11} S_{14} S_{8} S_{13} \\ S_{4} S_{5} S_{5} S_{6} S_{3} S_{2} S_{3} S_{6} S_{4} S_{2} S_{19} S_{18} S_{19} \\ S_{1} S_{1} S_{1} S_{12} S_{8} S_{13} S_{15} S_{14} S_{10} S_{16} S_{11} S_{13} \\ S_{2} S_{3} S_{3} S_{5} S_{4} S_{6} S_{4} S_{21} S_{7} \\ S_{1} S_{15} S_{8} S_{13} S_{11} S_{14} \\ S_{4} S_{3} S_{19} \\ S_{13} \\ \end{array} [/math] [math] \begin{array}{c} S_{14} \\ S_{2} S_{4} S_{7} \\ S_{1} S_{16} S_{12} S_{14} S_{8} S_{13} \\ S_{3} S_{2} S_{4} S_{4} S_{5} S_{6} S_{2} S_{19} S_{18} \\ S_{1} S_{1} S_{1} S_{16} S_{15} S_{10} S_{13} S_{11} S_{14} S_{12} S_{8} S_{14} \\ S_{5} S_{2} S_{6} S_{4} S_{5} S_{3} S_{2} S_{4} S_{6} S_{3} S_{7} S_{21} S_{7} \\ S_{1} S_{1} S_{1} S_{8} S_{11} S_{15} S_{16} S_{13} S_{10} S_{12} S_{14} S_{14} \\ S_{6} S_{3} S_{4} S_{5} S_{4} S_{2} S_{2} S_{19} S_{18} \\ S_{1} S_{12} S_{8} S_{13} S_{16} S_{14} \\ S_{4} S_{2} S_{7} \\ S_{14} \\ \end{array} [/math] [math] \begin{array}{c} S_{15} \\ S_{3} S_{5} S_{17} \\ S_{1} S_{13} S_{9} S_{15} S_{11} S_{12} \\ S_{3} S_{2} S_{4} S_{3} S_{5} S_{6} S_{5} S_{20} S_{19} \\ S_{1} S_{1} S_{1} S_{15} S_{14} S_{13} S_{11} S_{16} S_{8} S_{12} S_{9} S_{15} \\ S_{6} S_{3} S_{5} S_{5} S_{4} S_{2} S_{4} S_{2} S_{6} S_{3} S_{7} S_{17} S_{17} \\ S_{1} S_{1} S_{1} S_{16} S_{15} S_{12} S_{14} S_{9} S_{8} S_{11} S_{15} S_{13} \\ S_{5} S_{2} S_{3} S_{5} S_{4} S_{3} S_{6} S_{19} S_{20} \\ S_{1} S_{12} S_{9} S_{11} S_{13} S_{15} \\ S_{5} S_{3} S_{17} \\ S_{15} \\ \end{array} [/math] [math] \begin{array}{c} S_{16} \\ S_{2} S_{6} S_{18} \\ S_{1} S_{12} S_{14} S_{11} S_{10} S_{16} \\ S_{3} S_{2} S_{4} S_{6} S_{5} S_{2} S_{6} S_{21} S_{20} \\ S_{1} S_{1} S_{1} S_{14} S_{13} S_{9} S_{11} S_{16} S_{15} S_{12} S_{10} S_{16} \\ S_{5} S_{2} S_{4} S_{6} S_{3} S_{3} S_{2} S_{6} S_{5} S_{4} S_{18} S_{17} S_{18} \\ S_{1} S_{1} S_{1} S_{16} S_{10} S_{13} S_{15} S_{11} S_{9} S_{16} S_{14} S_{12} \\ S_{3} S_{6} S_{6} S_{4} S_{5} S_{2} S_{2} S_{21} S_{20} \\ S_{1} S_{10} S_{11} S_{14} S_{16} S_{12} \\ S_{6} S_{2} S_{18} \\ S_{16} \\ \end{array} [/math] [math] \begin{array}{c} S_{17} \\ S_{15} S_{9} \\ S_{3} S_{5} S_{20} \\ S_{1} S_{12} S_{9} S_{11} \\ S_{2} S_{3} S_{6} S_{5} S_{17} \\ S_{1} S_{1} S_{16} S_{15} S_{15} \\ S_{2} S_{5} S_{3} S_{6} S_{17} \\ S_{1} S_{12} S_{11} S_{9} \\ S_{5} S_{3} S_{20} \\ S_{9} S_{15} \\ S_{17} \\ \end{array} [/math] [math] \begin{array}{c} S_{18} \\ S_{16} S_{10} \\ S_{6} S_{2} S_{21} \\ S_{1} S_{10} S_{14} S_{11} \\ S_{6} S_{3} S_{4} S_{2} S_{18} \\ S_{1} S_{1} S_{16} S_{16} S_{13} \\ S_{4} S_{3} S_{2} S_{6} S_{18} \\ S_{1} S_{11} S_{10} S_{14} \\ S_{2} S_{6} S_{21} \\ S_{10} S_{16} \\ S_{18} \\ \end{array} [/math] [math] \begin{array}{c} S_{19} \\ S_{8} S_{13} \\ S_{3} S_{4} S_{7} \\ S_{1} S_{14} S_{8} S_{15} \\ S_{5} S_{3} S_{2} S_{4} S_{19} \\ S_{1} S_{1} S_{13} S_{13} S_{12} \\ S_{4} S_{2} S_{5} S_{3} S_{19} \\ S_{1} S_{15} S_{14} S_{8} \\ S_{4} S_{3} S_{7} \\ S_{8} S_{13} \\ S_{19} \\ \end{array} [/math] [math] \begin{array}{c} S_{20} \\ S_{12} S_{9} \\ S_{2} S_{5} S_{17} \\ S_{1} S_{16} S_{9} S_{15} \\ S_{2} S_{3} S_{5} S_{6} S_{20} \\ S_{1} S_{1} S_{12} S_{12} S_{11} \\ S_{3} S_{5} S_{2} S_{6} S_{20} \\ S_{1} S_{9} S_{15} S_{16} \\ S_{5} S_{2} S_{17} \\ S_{9} S_{12} \\ S_{20} \\ \end{array} [/math] [math] \begin{array}{c} S_{21} \\ S_{11} S_{10} \\ S_{3} S_{6} S_{18} \\ S_{1} S_{13} S_{10} S_{16} \\ S_{4} S_{6} S_{2} S_{3} S_{21} \\ S_{1} S_{1} S_{14} S_{11} S_{11} \\ S_{4} S_{6} S_{3} S_{2} S_{21} \\ S_{1} S_{16} S_{13} S_{10} \\ S_{6} S_{3} S_{18} \\ S_{10} S_{11} \\ S_{21} \\ \end{array} [/math]

Irreducible characters

All irreducible characters have height zero.

Cartan matrix

[math]\left( \begin{array}{ccccccccccccccccccccc} 32 & 16 & 16 & 16 & 16 & 16 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 4 & 4 & 4 & 4 & 4 & 4 \\ 16 & 16 & 8 & 8 & 8 & 8 & 4 & 4 & 4 & 8 & 8 & 4 & 8 & 4 & 4 & 2 & 2 & 4 & 4 & 2 & 4 \\ 16 & 8 & 16 & 8 & 8 & 8 & 4 & 4 & 4 & 4 & 4 & 8 & 4 & 8 & 8 & 4 & 4 & 2 & 2 & 4 & 2 \\ 16 & 8 & 8 & 16 & 8 & 8 & 4 & 8 & 0 & 8 & 4 & 8 & 4 & 4 & 4 & 2 & 4 & 4 & 0 & 0 & 2 \\ 16 & 8 & 8 & 8 & 16 & 8 & 0 & 4 & 8 & 4 & 4 & 4 & 8 & 8 & 4 & 0 & 2 & 2 & 4 & 4 & 0 \\ 16 & 8 & 8 & 8 & 8 & 16 & 8 & 0 & 4 & 4 & 8 & 4 & 4 & 4 & 8 & 4 & 0 & 0 & 2 & 2 & 4 \\ 8 & 4 & 4 & 4 & 0 & 8 & 8 & 0 & 0 & 2 & 4 & 2 & 0 & 0 & 4 & 4 & 0 & 0 & 0 & 0 & 4 \\ 8 & 4 & 4 & 8 & 4 & 0 & 0 & 8 & 0 & 4 & 0 & 4 & 2 & 2 & 0 & 0 & 4 & 4 & 0 & 0 & 0 \\ 8 & 4 & 4 & 0 & 8 & 4 & 0 & 0 & 8 & 0 & 2 & 0 & 4 & 4 & 2 & 0 & 0 & 0 & 4 & 4 & 0 \\ 8 & 8 & 4 & 8 & 4 & 4 & 2 & 4 & 0 & 8 & 4 & 4 & 4 & 2 & 2 & 1 & 2 & 4 & 0 & 0 & 2 \\ 8 & 8 & 4 & 4 & 4 & 8 & 4 & 0 & 2 & 4 & 8 & 2 & 4 & 2 & 4 & 2 & 0 & 0 & 2 & 1 & 4 \\ 8 & 4 & 8 & 8 & 4 & 4 & 2 & 4 & 0 & 4 & 2 & 8 & 2 & 4 & 4 & 2 & 4 & 2 & 0 & 0 & 1 \\ 8 & 8 & 4 & 4 & 8 & 4 & 0 & 2 & 4 & 4 & 4 & 2 & 8 & 4 & 2 & 0 & 1 & 2 & 4 & 2 & 0 \\ 8 & 4 & 8 & 4 & 8 & 4 & 0 & 2 & 4 & 2 & 2 & 4 & 4 & 8 & 4 & 0 & 2 & 1 & 2 & 4 & 0 \\ 8 & 4 & 8 & 4 & 4 & 8 & 4 & 0 & 2 & 2 & 4 & 4 & 2 & 4 & 8 & 4 & 0 & 0 & 1 & 2 & 2 \\ 4 & 2 & 4 & 2 & 0 & 4 & 4 & 0 & 0 & 1 & 2 & 2 & 0 & 0 & 4 & 4 & 0 & 0 & 0 & 0 & 2 \\ 4 & 2 & 4 & 4 & 2 & 0 & 0 & 4 & 0 & 2 & 0 & 4 & 1 & 2 & 0 & 0 & 4 & 2 & 0 & 0 & 0 \\ 4 & 4 & 2 & 4 & 2 & 0 & 0 & 4 & 0 & 4 & 0 & 2 & 2 & 1 & 0 & 0 & 2 & 4 & 0 & 0 & 0 \\ 4 & 4 & 2 & 0 & 4 & 2 & 0 & 0 & 4 & 0 & 2 & 0 & 4 & 2 & 1 & 0 & 0 & 0 & 4 & 2 & 0 \\ 4 & 2 & 4 & 0 & 4 & 2 & 0 & 0 & 4 & 0 & 1 & 0 & 2 & 4 & 2 & 0 & 0 & 0 & 2 & 4 & 0 \\ 4 & 4 & 2 & 2 & 0 & 4 & 4 & 0 & 0 & 2 & 4 & 1 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 4 \end{array}\right)[/math]

Decomposition matrix

[math]\left( \begin{array}{ccccccccccccccccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{array}\right)[/math]

Back to [math](C_2)^5[/math]