M(16,14,6)
Representative: | k((C_2)^4 : C_7) |
---|---|
Defect groups: | (C_2)^4 |
Inertial quotients: | C_5 |
k(B)= | 16 |
l(B)= | 7 |
{\rm mf}_k(B)= | 1 |
{\rm Pic}_k(B)= | |
Cartan matrix: | \left( \begin{array}{ccccccc} 4 & 2 & 2 & 2 & 2 & 2 & 2 \\ 2 & 4 & 2 & 2 & 2 & 2 & 2 \\ 2 & 2 & 4 & 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 4 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 & 4 & 2 & 2 \\ 2 & 2 & 2 & 2 & 2 & 4 & 2 \\ 2 & 2 & 2 & 2 & 2 & 2 & 4 \end{array} \right) |
Defect group Morita invariant? | Yes |
Inertial quotient Morita invariant? | Yes |
\mathcal{O}-Morita classes known? | Yes |
\mathcal{O}-Morita classes: | \mathcal{O} (C_2 \times ((C_2)^3 : C_7)) |
Decomposition matrices: | See below |
{\rm mf}_\mathcal{O}(B)= | 1 |
{\rm Pic}_{\mathcal{O}}(B)= | |
PI(B)= | |
Source algebras known? | No |
Source algebra reps: | |
k-derived equiv. classes known? | Yes |
k-derived equivalent to: | M(16,14,7) |
\mathcal{O}-derived equiv. classes known? | Yes |
p'-index covering blocks: | |
p'-index covered blocks: | |
Index p covering blocks: |
Contents
[hide]Basic algebra
Other notatable representatives
Covering blocks and covered blocks
Let N \triangleleft G with p'-index and let B be a block of \mathcal{O} G covering a block b of \mathcal{O} N.
If b is in M(16,14,6), then B is in M(16,14,1), M(16,14,6) or M(16,14,13).
Projective indecomposable modules
Labelling the simple B-modules by S_1, S_2, S_3, S_4, S_5, S_6, S_7, the projective indecomposable modules have Loewy structure as follows:
\begin{array}{ccccccc} \begin{array}{c} S_1 \\ S_3 S_4 S_5 \\ S_2 S_6 S_7 \\ S_1 \\ \end{array} & \begin{array}{c} S_2 \\ S_1 S_4 S_7 \\ S_3 S_5 S_6 \\ S_2 \\ \end{array} & \begin{array}{c} S_3 \\ S_2 S_4 S_6 \\ S_1 S_5 S_7 \\ S_3 \\ \end{array} & \begin{array}{c} S_4 \\ S_5 S_6 S_7 \\ S_1 S_2 S_3 \\ S_4 \\ \end{array} & \begin{array}{c} S_5 \\ S_2 S_3 S_7 \\ S_1 S_4 S_6 \\ S_5 \\ \end{array} & \begin{array}{c} S_6 \\ S_1 S_2 S_5 \\ S_3 S_4 S_7 \\ S_6 \\ \end{array} & \begin{array}{c} S_7 \\ S_1 S_3 S_6 \\ S_2 S_4 S_5 \\ S_7 \\ \end{array} \end{array}
Irreducible characters
All irreducible characters have height zero.
Decomposition matrix
\left( \begin{array}{ccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{array}\right)