M(16,2,1)

From Block library
Revision as of 12:00, 15 November 2018 by Charles Eaton (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
M(16,2,1) - [math]k(C_4 \times C_4)[/math]
M(4,2,1)quiver.png
Representative: [math]k(C_4 \times C_4)[/math]
Defect groups: [math]C_4 \times C_4[/math]
Inertial quotients: [math]1[/math]
[math]k(B)=[/math] 16
[math]l(B)=[/math] 1
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math]
Cartan matrix: [math]\left( \begin{array}{c} 16 \\ \end{array} \right)[/math]
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]\mathcal{O} (C_4 \times C_4)[/math]
Decomposition matrices: [math]\left( \begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \\ \end{array}\right)[/math]
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] [math](C_4 \times C_4):{\rm Aut}(C_4 \times C_4)[/math]
[math]PI(B)=[/math] {{{PIgroup}}}
Source algebras known? No
Source algebra reps:
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: Forms a derived equivalence class
[math]\mathcal{O}[/math]-derived equiv. classes known? Yes
[math]p'[/math]-index covering blocks: M(16,2,2)
[math]p'[/math]-index covered blocks:
Index [math]p[/math] covering blocks: {{{pcoveringblocks}}}

These are nilpotent blocks.

Basic algebra

Quiver: a:<1,1>, b:<1,1>

Relations w.r.t. [math]k[/math]: a^4=b^4=ab+ba=0

Other notatable representatives

Projective indecomposable modules

Labelling the unique simple [math]B[/math]-module by [math]1[/math], the unique projective indecomposable module has Loewy structure as follows:

[math]\begin{array}{c} 1 \\ 1 \ 1 \\ 1 \ 1 \ 1 \\ 1 \ 1 \ 1 \ 1 \\ 1 \ 1 \ 1 \\ 1 \ 1 \\ 1 \\ \end{array} [/math]

Irreducible characters

All irreducible characters have height zero.