Difference between revisions of "Classification by p-group"

From Block library
Jump to: navigation, search
(Blocks for p=2)
(Blocks for p=2)
 
Line 441: Line 441:
 
|64 || [[SmallGroup(64,114)|114]] || [[SmallGroup(64,114)]] || No || || || || ||
 
|64 || [[SmallGroup(64,114)|114]] || [[SmallGroup(64,114)]] || No || || || || ||
 
|-
 
|-
|64 || [[D8xC8|115]] || [[D8xC8|<math>(D_8 \times C_8</math>]]|| No || || || || ||
+
|64 || [[D8xC8|115]] || [[D8xC8|<math>D_8 \times C_8</math>]]|| No || || || || ||
 
|-
 
|-
 
|64 || [[SmallGroup(64,116)|116]] || [[SmallGroup(64,116)]] || No || || || || ||
 
|64 || [[SmallGroup(64,116)|116]] || [[SmallGroup(64,116)]] || No || || || || ||
Line 447: Line 447:
 
|64 || [[SmallGroup(64,117)|117]] || [[SmallGroup(64,117)]] || No || || || || ||
 
|64 || [[SmallGroup(64,117)|117]] || [[SmallGroup(64,117)]] || No || || || || ||
 
|-
 
|-
|64 || [[D16xC4|118]] || [[D16xC4|<math>(D_{16} \times C_4</math>]]|| No || || || || ||
+
|64 || [[D16xC4|118]] || [[D16xC4|<math>D_{16} \times C_4</math>]]|| No || || || || ||
 
|-
 
|-
|64 || [[SD16xC4|119]] || [[SD16xC4|<math>(SD_{16} \times C_4</math>]]|| No || || || || ||
+
|64 || [[SD16xC4|119]] || [[SD16xC4|<math>SD_{16} \times C_4</math>]]|| No || || || || ||
 
|-
 
|-
|64 || [[Q16xC4|120]] || [[Q16xC4|<math>(Q_{16} \times C_4</math>]]|| No || || || || ||
+
|64 || [[Q16xC4|120]] || [[Q16xC4|<math>Q_{16} \times C_4</math>]]|| No || || || || ||
 
|-
 
|-
|64 || [[SD16:C4|121]] || [[SD16:C4|<math>(SD_{16}:C_4</math>]]|| No || || || || || Fusion trivial?
+
|64 || [[SD16:C4|121]] || [[SD16:C4|<math>SD_{16}:C_4</math>]]|| No || || || || || Fusion trivial?
 
|-
 
|-
|64 || [[Q16:C4|122]] || [[Q16:C4|<math>(Q_{16}:C_4</math>]]|| No || || || || ||
+
|64 || [[Q16:C4|122]] || [[Q16:C4|<math>Q_{16}:C_4</math>]]|| No || || || || ||
 
|-
 
|-
|64 || [[D16:C4|123]] || [[D16:C4|<math>(D_{16}:C_4</math>]]|| No || || || || ||
+
|64 || [[D16:C4|123]] || [[D16:C4|<math>D_{16}:C_4</math>]]|| No || || || || ||
 
|-
 
|-
 
|64 || [[SmallGroup(64,124)|124]] || [[SmallGroup(64,124)]] || No || || || || ||
 
|64 || [[SmallGroup(64,124)|124]] || [[SmallGroup(64,124)]] || No || || || || ||
Line 463: Line 463:
 
|64 || [[SmallGroup(64,125)|125]] || [[SmallGroup(64,125)]] || No || || || || ||
 
|64 || [[SmallGroup(64,125)|125]] || [[SmallGroup(64,125)]] || No || || || || ||
 
|-
 
|-
|64 || [[Q8xC8|126]] || [[Q8xC8|<math>(Q_{8} \times C_8</math>]]|| <math>\mathcal{O}</math> || 3(3) || || || [[References#E|[EL20]]] || Invariants known by [[References#S|[Sa14,9.28]]]
+
|64 || [[Q8xC8|126]] || [[Q8xC8|<math>Q_{8} \times C_8</math>]]|| <math>\mathcal{O}</math> || 3(3) || || || [[References#E|[EL20]]] || Invariants known by [[References#S|[Sa14,9.28]]]
 
|-
 
|-
 
|64 || [[SmallGroup(64,127)|127]] || [[SmallGroup(64,127)]] || No || || || || ||
 
|64 || [[SmallGroup(64,127)|127]] || [[SmallGroup(64,127)]] || No || || || || ||
Line 472: Line 472:
 
|-
 
|-
 
|64 || [[D8:D8|130]] || [[D8:D8|<math>D_8:D_{8}</math>]]|| No || || || || ||
 
|64 || [[D8:D8|130]] || [[D8:D8|<math>D_8:D_{8}</math>]]|| No || || || || ||
 +
|-
 +
|64 || [[Q8xQ8|239]] || [[Q8xQ8|<math>Q_{8} \times Q_8</math>]]|| <math>\mathcal{O}</math> || || || || [[References#E|[EL20]]] ||
 
|-
 
|-
 
|64 || [[SmallGroup(64,245)|245]] || [[SmallGroup(64,245)]] || <math>\mathcal{O}</math> || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References#E|[Ea24]]] || Sylow 2-subgroup of <math>PSU_3(4)</math>
 
|64 || [[SmallGroup(64,245)|245]] || [[SmallGroup(64,245)]] || <math>\mathcal{O}</math> || 3(3) || <math>\mathcal{O}</math> || <math>\mathcal{O}</math> || [[References#E|[Ea24]]] || Sylow 2-subgroup of <math>PSU_3(4)</math>

Latest revision as of 18:59, 10 January 2024

Classification of Morita equivalences for blocks with a given defect group

On this page we list classifications of Morita equivalence classes for each isomorphism class of p-groups in turn. Generic classifications for classes of p-groups can be found here.

See this page for a description of the labelling conventions.

Blocks for [math] p=2 [/math]

The table for defect groups of order 32 takes as its starting point Table 13.1 of Sambale's book [Sa14].


Blocks for [math]p=3[/math]

Blocks for [math]p=5[/math]

Blocks for [math]p\geq 7[/math]