Difference between revisions of "Status of Donovan's conjecture"
(→Donovan's conjecture by p-group: Extraspecial and wreathed) |
|||
(17 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
[[Image:Donovan.jpg|150px|thumb|right|Peter Donovan]] | [[Image:Donovan.jpg|150px|thumb|right|Peter Donovan]] | ||
− | |||
− | |||
== Donovan's conjecture by <math>p</math>-group == | == Donovan's conjecture by <math>p</math>-group == | ||
− | In the following, the column headed Donovan's conjecture indicates whether the conjecture is known over <math>k</math> or <math>\mathcal{O}</math>. | + | In the following, the column headed [[Statements of conjectures #Donovan's conjecture|Donovan's conjecture]] indicates whether the conjecture is known over <math>k</math> or <math>\mathcal{O}</math>. |
{| class="wikitable" | {| class="wikitable" | ||
Line 15: | Line 13: | ||
! scope="col"| Notes | ! scope="col"| Notes | ||
|- | |- | ||
− | |Cyclic <math>p</math>-groups || <math>\mathcal{O}</math> || Yes || [[References|[Li96]]] || | + | |Cyclic <math>p</math>-groups || <math>\mathcal{O}</math> || Yes || [[References#L|[Li96]]] || |
+ | |- | ||
+ | |<math>C_2 \times C_2</math> || <math>\mathcal{O}</math> || Yes || [[References#C|[CEKL11]]] || Donovan's conjecture without CFSG, Puig using CFSG | ||
+ | |- | ||
+ | |Abelian <math>2</math>-groups || <math>\mathcal{O}</math> || No || [[References#E|[EEL18]]] || | ||
|- | |- | ||
− | |Abelian <math> | + | |Abelian <math>3</math>-groups || No || No || [[References#K|[Ko03]]] || Puig's conjecture known for principal blocks |
|- | |- | ||
− | |<math> | + | |Dihedral <math>2</math>-groups || <math>k</math> || No || [[References#E|[Er87]]] || |
|- | |- | ||
− | | | + | |Semidihedral <math>2</math>-groups || <math>k</math> || No || [[References#E|[Er88c], [Er90b]]] || |
|- | |- | ||
− | |<math> | + | |<math>Q_8</math> || <math>\mathcal{O}</math> || No || [[References#E|[Er88a]]], [[References#E|[Er88b]]], [[References#K|[HKL07]]], [[References#E|[Ei16]]] || |
|- | |- | ||
− | | | + | |<math>Q_8 \times C_{2^n}</math> || <math>\mathcal{O}</math> || No || [[References#E|[EL20]]] || |
|- | |- | ||
− | | | + | |<math>Q_8 \times Q_8</math> || <math>\mathcal{O}</math> || No || [[References#E|[EL20]]] || |
|- | |- | ||
− | |Generalised quaternion <math>2</math>-groups || No || No || [[References|[Er88a], [Er88b]]] || Donovan's conjecture over <math> | + | |Generalised quaternion <math>2</math>-groups || No || No || [[References#E|[Er88a], [Er88b]]] || Donovan's conjecture over <math>\mathcal{O}</math> known if <math>l(B) \neq 2</math><ref>When <math>l(B) \neq 2</math>, each <math>k</math>-Morita equivalence class lifts uniquely to <math>\mathcal{O}</math> by [[References|[Ei16]]].</ref> |
|- | |- | ||
− | |Minimal nonabelian <math>2</math>-groups <math>\langle x,y:x^{2^r}=y^{2^r}=[x,y]^2=[x,[x,y]]=[y,[x,y]]=1 \rangle</math> || <math>\mathcal{O}</math> || No || [[References|[EKS12]]] || | + | |Minimal nonabelian <math>2</math>-groups of the form <math>\langle x,y:x^{2^r}=y^{2^r}=[x,y]^2=[x,[x,y]]=[y,[x,y]]=1 \rangle</math> || <math>\mathcal{O}</math> || No || [[References#E|[EKS12]]] || |
+ | |- | ||
+ | |Metacyclic noncyclic <math>2</math>-groups of nonmaximal class || <math>\mathcal{O}</math> || No || [[References#C|[CG12]]], [[References#S|[Sa12b]]] || All blocks nilpotent | ||
+ | |- | ||
+ | |<math>p_+^{1+2}</math> for <math>p \geq 5</math> || <math>\mathcal{O}</math> || No || [[References#A|[AE23]]] || | ||
+ | |- | ||
+ | |<math>C_{2^n} \wr C_2</math> || Principal blocks (<math>\mathcal{O}</math>) || Principal blocks (<math>\mathcal{O}</math>) || [[References#K|[KoLaSa23]]] || | ||
|} | |} | ||
+ | |||
+ | == Donovan's conjecture by class of group or block == | ||
+ | |||
+ | In the table, the column headed Donovan's conjecture indicates whether the conjecture is known over <math>k</math> or <math>\mathcal{O}</math>. | ||
+ | |||
+ | Note that knowing the <math>\mathcal{O}</math>-Donovan conjecture or [[Statements of conjectures #Puig's conjecture|Puig's conjecture]] for blocks for a class of groups does not necessarily mean that the <math>\mathcal{O}</math>-lifts or source algebras of the <math>k</math>-Morita equivalence classes involved are known. This is only known for elements of the Morita equivalence class which occur as blocks of groups in that class. | ||
+ | |||
+ | {| class="wikitable" | ||
+ | |- | ||
+ | ! scope="col"| Groups | ||
+ | ! scope="col"| Blocks | ||
+ | ! scope="col"| Donovan's conjecture | ||
+ | ! scope="col"| Puig's conjecture | ||
+ | ! scope="col"| References | ||
+ | ! scope="col"| Notes | ||
+ | |- | ||
+ | |<math>p</math>-solvable groups || All || <math>\mathcal{O}</math> || Yes || Over <math>k</math> by [[References|[Ku81]]], Puig's conjecture by [[References|[Pu09]]] || See [[References#L|[Li18d,10.6.2]]] | ||
+ | |- | ||
+ | |Symmetric groups || All || <math>\mathcal{O}</math> || Yes || Over <math>k</math> by [[References#S|[Sc91]]], Puig's conjecture by [[References#P|[Pu94]]] || | ||
+ | |- | ||
+ | |Double covers of symmetric groups || All || <math>\mathcal{O}</math> || Yes || [[References#K|[Ke96]]] || | ||
+ | |- | ||
+ | |Alternating groups and their double covers || All || <math>\mathcal{O}</math> || Yes || [[References#K|[Ke02], [Ke96]]] || | ||
+ | |- | ||
+ | |<math>GL_n(q)</math> for fixed <math>q</math> || Unipotent blocks || <math>\mathcal{O}</math> || Yes || Over <math>k</math> by [[References#J|[Jo96]]], Puig's conjecture by [[References#K|[Ke01]]] || | ||
+ | |- | ||
+ | |Classical groups || Unipotent blocks for linear primes || <math>\mathcal{O}</math> || Yes || [[References#H|[HK00], [HK05]]] || Detailed results beyond those stated here | ||
+ | |- | ||
+ | |Weyl groups of type <math>B, D</math> || All || <math>\mathcal{O}</math> || Yes || [[References#K|[Ke00]]] || | ||
+ | |- | ||
+ | |Arbitrary groups || Blocks with [[Glossary#Trivial intersection subgroup|trivial intersection]] defect groups || <math>\mathcal{O}</math> || No || [[References#A|[AE04]]] || | ||
+ | |} | ||
+ | |||
+ | == Weak Donovan conjecture == | ||
+ | |||
+ | As described in [[References #D|[Dü04]]] the [[Statements of conjectures #Weak Donovans conjecture|Weak Donovan conjecture]] is equivalent to [[Statements of conjectures #Weak Donovans conjecture|bounding the dimensions of the Ext spaces between simple modules]] and [[Statements of conjectures #Weak Donovans conjecture|bounding the Loewy length]]. See [[References #G|[GT19]]] and [[References #S|[Sh20]]] for progress on the former problem. | ||
+ | |||
+ | == Notes == | ||
+ | |||
+ | <references /> |
Latest revision as of 09:06, 24 October 2023
Contents
Donovan's conjecture by [math]p[/math]-group
In the following, the column headed Donovan's conjecture indicates whether the conjecture is known over [math]k[/math] or [math]\mathcal{O}[/math].
[math]p[/math]-groups | Donovan's conjecture | Puig's conjecture | References | Notes |
---|---|---|---|---|
Cyclic [math]p[/math]-groups | [math]\mathcal{O}[/math] | Yes | [Li96] | |
[math]C_2 \times C_2[/math] | [math]\mathcal{O}[/math] | Yes | [CEKL11] | Donovan's conjecture without CFSG, Puig using CFSG |
Abelian [math]2[/math]-groups | [math]\mathcal{O}[/math] | No | [EEL18] | |
Abelian [math]3[/math]-groups | No | No | [Ko03] | Puig's conjecture known for principal blocks |
Dihedral [math]2[/math]-groups | [math]k[/math] | No | [Er87] | |
Semidihedral [math]2[/math]-groups | [math]k[/math] | No | [Er88c], [Er90b] | |
[math]Q_8[/math] | [math]\mathcal{O}[/math] | No | [Er88a], [Er88b], [HKL07], [Ei16] | |
[math]Q_8 \times C_{2^n}[/math] | [math]\mathcal{O}[/math] | No | [EL20] | |
[math]Q_8 \times Q_8[/math] | [math]\mathcal{O}[/math] | No | [EL20] | |
Generalised quaternion [math]2[/math]-groups | No | No | [Er88a], [Er88b] | Donovan's conjecture over [math]\mathcal{O}[/math] known if [math]l(B) \neq 2[/math][1] |
Minimal nonabelian [math]2[/math]-groups of the form [math]\langle x,y:x^{2^r}=y^{2^r}=[x,y]^2=[x,[x,y]]=[y,[x,y]]=1 \rangle[/math] | [math]\mathcal{O}[/math] | No | [EKS12] | |
Metacyclic noncyclic [math]2[/math]-groups of nonmaximal class | [math]\mathcal{O}[/math] | No | [CG12], [Sa12b] | All blocks nilpotent |
[math]p_+^{1+2}[/math] for [math]p \geq 5[/math] | [math]\mathcal{O}[/math] | No | [AE23] | |
[math]C_{2^n} \wr C_2[/math] | Principal blocks ([math]\mathcal{O}[/math]) | Principal blocks ([math]\mathcal{O}[/math]) | [KoLaSa23] |
Donovan's conjecture by class of group or block
In the table, the column headed Donovan's conjecture indicates whether the conjecture is known over [math]k[/math] or [math]\mathcal{O}[/math].
Note that knowing the [math]\mathcal{O}[/math]-Donovan conjecture or Puig's conjecture for blocks for a class of groups does not necessarily mean that the [math]\mathcal{O}[/math]-lifts or source algebras of the [math]k[/math]-Morita equivalence classes involved are known. This is only known for elements of the Morita equivalence class which occur as blocks of groups in that class.
Groups | Blocks | Donovan's conjecture | Puig's conjecture | References | Notes |
---|---|---|---|---|---|
[math]p[/math]-solvable groups | All | [math]\mathcal{O}[/math] | Yes | Over [math]k[/math] by [Ku81], Puig's conjecture by [Pu09] | See [Li18d,10.6.2] |
Symmetric groups | All | [math]\mathcal{O}[/math] | Yes | Over [math]k[/math] by [Sc91], Puig's conjecture by [Pu94] | |
Double covers of symmetric groups | All | [math]\mathcal{O}[/math] | Yes | [Ke96] | |
Alternating groups and their double covers | All | [math]\mathcal{O}[/math] | Yes | [Ke02], [Ke96] | |
[math]GL_n(q)[/math] for fixed [math]q[/math] | Unipotent blocks | [math]\mathcal{O}[/math] | Yes | Over [math]k[/math] by [Jo96], Puig's conjecture by [Ke01] | |
Classical groups | Unipotent blocks for linear primes | [math]\mathcal{O}[/math] | Yes | [HK00], [HK05] | Detailed results beyond those stated here |
Weyl groups of type [math]B, D[/math] | All | [math]\mathcal{O}[/math] | Yes | [Ke00] | |
Arbitrary groups | Blocks with trivial intersection defect groups | [math]\mathcal{O}[/math] | No | [AE04] |
Weak Donovan conjecture
As described in [Dü04] the Weak Donovan conjecture is equivalent to bounding the dimensions of the Ext spaces between simple modules and bounding the Loewy length. See [GT19] and [Sh20] for progress on the former problem.