Difference between revisions of "M(16,14,2)"

From Block library
Jump to: navigation, search
(Created page with "{{blockbox |title = M(16,14,2) - <math>k(C_2 \times C_2 \times A_5)</math> |image =   |representative = <math>k(C_2 \times C_2 \times A_5)</math> |defect = (C2)%5E4|...")
 
 
(One intermediate revision by the same user not shown)
Line 25: Line 25:
 
|sourcereps =
 
|sourcereps =
 
|k-derived-known? = Yes
 
|k-derived-known? = Yes
|k-derived = Forms a derived equivalence class
+
|k-derived = [[M(16,14,3)]]
 
|O-derived-known? = Yes
 
|O-derived-known? = Yes
 
|coveringblocks =
 
|coveringblocks =
Line 88: Line 88:
 
== Decomposition matrix ==
 
== Decomposition matrix ==
 
<math>\left( \begin{array}{ccc}
 
<math>\left( \begin{array}{ccc}
1 & 0 & 0 & 0 \\
+
1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
+
1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
+
1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
+
1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
+
1 & 0 & 1 \\
1 & 1 & 0 & 0 \\
+
1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
+
1 & 0 & 1 \\
1 & 1 & 0 & 0 \\
+
1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
+
1 & 0 & 1 \\
1 & 1 & 0 & 0 \\
+
1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
+
1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
+
1 & 0 & 1 \\
0 & 0 & 0 & 1 \\
+
1 & 1 & 1 \\
0 & 0 & 0 & 1 \\
+
1 & 1 & 1 \\
0 & 0 & 0 & 1 \\
+
1 & 1 & 1 \\
0 & 0 & 0 & 1 \\
+
1 & 1 & 1
1 & 1 & 1 & 0 \\
 
1 & 1 & 1 & 0 \\
 
1 & 1 & 1 & 0 \\
 
1 & 1 & 1 & 0
 
 
\end{array}\right)</math>
 
\end{array}\right)</math>
  
  
 
[[(C2)%5E4|Back to <math>(C_2)^4</math>]]
 
[[(C2)%5E4|Back to <math>(C_2)^4</math>]]

Latest revision as of 13:48, 27 November 2019

M(16,14,2) - [math]k(C_2 \times C_2 \times A_5)[/math]
[[File: |250px]]
Representative: [math]k(C_2 \times C_2 \times A_5)[/math]
Defect groups: [math](C_2)^4[/math]
Inertial quotients: [math]C_3[/math]
[math]k(B)=[/math] 16
[math]l(B)=[/math] 3
[math]{\rm mf}_k(B)=[/math] 1
[math]{\rm Pic}_k(B)=[/math]  
Cartan matrix: [math]\left( \begin{array}{ccc} 16 & 8 & 8\\ 8 & 8 & 4 \\ 8 & 4 & 8 \end{array} \right)[/math]
Defect group Morita invariant? Yes
Inertial quotient Morita invariant? Yes
[math]\mathcal{O}[/math]-Morita classes known? Yes
[math]\mathcal{O}[/math]-Morita classes: [math]B_0(\mathcal{O} (C_2 \times C_2 \times A_5)[/math]
Decomposition matrices: See below
[math]{\rm mf}_\mathcal{O}(B)=[/math] 1
[math]{\rm Pic}_{\mathcal{O}}(B)=[/math] [math](C_2 \times C_2):S_3 \times C_2[/math]
[math]PI(B)=[/math]
Source algebras known? No
Source algebra reps:
[math]k[/math]-derived equiv. classes known? Yes
[math]k[/math]-derived equivalent to: M(16,14,3)
[math]\mathcal{O}[/math]-derived equiv. classes known? Yes
[math]p'[/math]-index covering blocks:
[math]p'[/math]-index covered blocks:
Index [math]p[/math] covering blocks:

Basic algebra

Other notatable representatives

Covering blocks and covered blocks

Let [math]N \triangleleft G[/math] with [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].

If [math]b[/math] is in M(16,14,2), then [math]B[/math] is in M(16,14,2) or M(16,14,9).

Projective indecomposable modules

Labelling the simple [math]B[/math]-modules by [math]S_1, S_2, S_3[/math], the projective indecomposable modules have Loewy structure as follows:

[math]\begin{array}{ccc} \begin{array}{c} S_1 \\ S_1 S_1 S_2 S_3 \\ S_1 S_1 S_1 S_2 S_3 S_2 S_3 \\ S_1 S_1 S_1 S_1 S_2 S_3 S_2 S_3 \\ S_1 S_1 S_1 S_2 S_3 S_2 S_3 \\ S_1 S_1 S_2 S_3 \\ S_1 \\ \end{array} & \begin{array}{c} S_2 \\ S_1 S_2 S_2 \\ S_1 S_1 S_3 S_2 \\ S_1 S_1 S_3 S_3 \\ S_1 S_1 S_3 S_2 \\ S_1 S_2 S_2 \\ S_2 \\ \end{array} & \begin{array}{c} S_3 \\ S_1 S_3 S_3 \\ S_1 S_1 S_2 S_3 \\ S_1 S_1 S_2 S_2 \\ S_1 S_1 S_2 S_3 \\ S_1 S_3 S_3 \\ S_3 \\ \end{array} \end{array} [/math]

Irreducible characters

All irreducible characters have height zero.

Decomposition matrix

[math]\left( \begin{array}{ccc} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right)[/math]


Back to [math](C_2)^4[/math]