Difference between revisions of "M(3^n,1,2)"
 (Created page with "{{blockbox |title = M(3^n,1,2) - <math>kD_{2.3^n}</math>  |image = M(5,1,2)quiver.png |representative =  <math>kD_{2.3^n}</math> |defect = <math>C_{3^n}</math> |ine...")  | 
			
(No difference) 
 | 
Latest revision as of 14:22, 8 September 2018
M(3^n,1,2) - [math]kD_{2.3^n}[/math]
| Representative: | [math]kD_{2.3^n}[/math] | 
|---|---|
| Defect groups: | [math]C_{3^n}[/math] | 
| Inertial quotients: | [math]C_2[/math] | 
| [math]k(B)=[/math] | [math]\frac{3^n+3}{2}[/math] | 
| [math]l(B)=[/math] | 2 | 
| [math]{\rm mf}_k(B)=[/math] | 1 | 
| [math]{\rm Pic}_k(B)=[/math] | |
| Cartan matrix: | [math]\left( \begin{array}{cc} \frac{3^n+1}{2} & \frac{3^n-1}{2} \\ \frac{3^n-1}{2} & \frac{3^n+1}{2} \\ \end{array} \right)[/math] | 
| Defect group Morita invariant? | Yes | 
| Inertial quotient Morita invariant? | Yes | 
| [math]\mathcal{O}[/math]-Morita classes known? | Yes | 
| [math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O} D_{18}[/math] | 
| Decomposition matrices: | [math]\left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ \vdots & \vdots \\ 1 & 1 \\ 1 & 1 \\ \end{array}\right)[/math] | 
| [math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 | 
| [math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | |
| [math]PI(B)=[/math] | {{{PIgroup}}} | 
| Source algebras known? | Yes | 
| Source algebra reps: | [math]kD_{2.3^n}[/math] | 
| [math]k[/math]-derived equiv. classes known? | Yes | 
| [math]k[/math]-derived equivalent to: | M(3^n,1,3) | 
| [math]\mathcal{O}[/math]-derived equiv. classes known? | Yes | 
| [math]p'[/math]-index covering blocks: | {{{coveringblocks}}} | 
| [math]p'[/math]-index covered blocks: | {{{coveredblocks}}} | 
| Index [math]p[/math] covering blocks: | {{{pcoveringblocks}}} | 
Contents
Basic algebra
Quiver: a:<1,2>, b:<2,1>
Relations w.r.t. [math]k[/math]: [math]a(ba)^{(3^n-1)/2}=b(ab)^{(3^n-1)/2}=0[/math]
Other notatable representatives
Covering blocks and covered blocks
Projective indecomposable modules
Labelling the simple [math]B[/math]-modules by [math]S_1, S_2[/math], the projective indecomposable modules have Loewy structure as follows:
[math]\begin{array}{cc} \begin{array}{c} S_1 \\ S_2 \\ S_1 \\ S_2 \\ \vdots \\ S_1 \\ S_2 \\ S_1 \\ \end{array}, & \begin{array}{c} S_2 \\ S_1 \\ S_2 \\ S_1 \\ \vdots \\ S_2 \\ S_1 \\ S_2 \\ \end{array} \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.