Difference between revisions of "M(32,51,7)"
 (Created page with "{{blockbox |title = M(32,51,7) - <math>B_0(k(\SL_2(8) \times (C_2)^2))</math>  |image =    |representative =  <math>B_0(k(\SL_2(8) \times (C_2)^2))</math> |defect = (C2...")  | 
				|||
| Line 1: | Line 1: | ||
{{blockbox  | {{blockbox  | ||
| − | |title = M(32,51,7) - <math>B_0(k(  | + | |title = M(32,51,7) - <math>B_0(k(SL_2(8) \times (C_2)^2))</math>    | 
|image =      | |image =      | ||
| − | |representative =  <math>B_0(k(  | + | |representative =  <math>B_0(k(SL_2(8) \times (C_2)^2))</math>  | 
|defect = [[(C2)%5E5|<math>(C_2)^5</math>]]  | |defect = [[(C2)%5E5|<math>(C_2)^5</math>]]  | ||
|inertialquotients = <math>C_7</math>  | |inertialquotients = <math>C_7</math>  | ||
| Line 21: | Line 21: | ||
|inertial-morita-inv? = Yes  | |inertial-morita-inv? = Yes  | ||
|O-morita? = Yes  | |O-morita? = Yes  | ||
| − | |O-morita = <math>\mathcal{O} B_0(\mathcal{O}(  | + | |O-morita = <math>\mathcal{O} B_0(\mathcal{O}(SL_2(8) \times (C_2)^2))</math>  | 
|decomp = See below.  | |decomp = See below.  | ||
|O-morita-frob = 1  | |O-morita-frob = 1  | ||
Latest revision as of 12:14, 6 December 2019
| Representative: | [math]B_0(k(SL_2(8) \times (C_2)^2))[/math] | 
|---|---|
| Defect groups: | [math](C_2)^5[/math] | 
| Inertial quotients: | [math]C_7[/math] | 
| [math]k(B)=[/math] | 32 | 
| [math]l(B)=[/math] | 7 | 
| [math]{\rm mf}_k(B)=[/math] | 1 | 
| [math]{\rm Pic}_k(B)=[/math] | |
| Cartan matrix: | [math]\left( \begin{array}{ccccccc} 32 & 16 & 16 & 16 & 8 & 8 & 8 \\ 16 & 16 & 8 & 8 & 0 & 4 & 8 \\ 16 & 8 & 16 & 8 & 8 & 0 & 4 \\ 16 & 8 & 8 & 16 & 4 & 8 & 0 \\ 8 & 0 & 8 & 4 & 8 & 0 & 0 \\ 8 & 4 & 0 & 8 & 0 & 8 & 0 \\ 8 & 8 & 4 & 0 & 0 & 0 & 8 \end{array} \right)[/math] | 
| Defect group Morita invariant? | Yes | 
| Inertial quotient Morita invariant? | Yes | 
| [math]\mathcal{O}[/math]-Morita classes known? | Yes | 
| [math]\mathcal{O}[/math]-Morita classes: | [math]\mathcal{O} B_0(\mathcal{O}(SL_2(8) \times (C_2)^2))[/math] | 
| Decomposition matrices: | See below. | 
| [math]{\rm mf}_\mathcal{O}(B)=[/math] | 1 | 
| [math]{\rm Pic}_{\mathcal{O}}(B)=[/math] | |
| [math]PI(B)=[/math] | |
| Source algebras known? | No | 
| Source algebra reps: | |
| [math]k[/math]-derived equiv. classes known? | Yes | 
| [math]k[/math]-derived equivalent to: | M(32,51,6) | 
| [math]\mathcal{O}[/math]-derived equiv. classes known? | Yes | 
| [math]p'[/math]-index covering blocks: | |
| [math]p'[/math]-index covered blocks: | |
| Index [math]p[/math] covering blocks: | 
Contents
Basic algebra
Other notatable representatives
Covering blocks and covered blocks
Let [math]N \triangleleft G[/math] with prime [math]p'[/math]-index and let [math]B[/math] be a block of [math]\mathcal{O} G[/math] covering a block [math]b[/math] of [math]\mathcal{O} N[/math].
If [math]b[/math] is in M(32,51,6), then [math]B[/math] is in M(32,51,7), M(32,51,15), M(31,51,19) or M(32,51,21).
Projective indecomposable modules
Labelling the simple [math]B[/math]-modules by [math]S_1, \dots, S_7[/math], the projective indecomposable modules have Loewy structure as follows:
[math]\begin{array}{cccc} \begin{array}{c} S_1 \\ S_1 S_1 S_3 S_2 S_4 \\ S_1 S_1 S_1 S_1 S_4 S_3 S_2 S_3 S_4 S_2 S_5 S_6 S_7 \\ S_1 S_1 S_1 S_1 S_1 S_1 S_2 S_2 S_4 S_3 S_2 S_4 S_3 S_4 S_3 S_7 S_5 S_6 S_5 S_6 S_7 \\ S_1 S_1 S_1 S_1 S_1 S_1 S_2 S_3 S_4 S_3 S_2 S_4 S_3 S_4 S_2 S_2 S_4 S_3 S_5 S_5 S_7 S_7 S_6 S_6 \\ S_1 S_1 S_1 S_1 S_1 S_1 S_3 S_4 S_4 S_2 S_4 S_2 S_3 S_3 S_2 S_7 S_6 S_5 S_7 S_6 S_5 \\ S_1 S_1 S_1 S_1 S_3 S_2 S_3 S_2 S_4 S_4 S_6 S_5 S_7 \\ S_1 S_1 S_2 S_3 S_4 \\ S_1 \\ \end{array} & \begin{array}{c} S_2 \\ S_1 S_2 S_2 S_5 \\ S_1 S_1 S_3 S_2 S_2 S_4 S_5 S_5 \\ S_1 S_1 S_1 S_4 S_3 S_3 S_4 S_2 S_2 S_5 S_7 \\ S_1 S_1 S_1 S_1 S_2 S_4 S_2 S_4 S_3 S_3 S_7 S_7 \\ S_1 S_1 S_1 S_2 S_3 S_4 S_3 S_2 S_4 S_5 S_7 \\ S_1 S_1 S_4 S_2 S_2 S_3 S_5 S_5 \\ S_1 S_2 S_2 S_5 \\ S_2 \\ \end{array} & \begin{array}{c} S_3 \\ S_1 S_3 S_3 S_6 \\ S_1 S_1 S_2 S_4 S_3 S_3 S_6 S_6 \\ S_1 S_1 S_1 S_2 S_4 S_3 S_2 S_4 S_3 S_6 S_5 \\ S_1 S_1 S_1 S_1 S_4 S_2 S_3 S_3 S_2 S_4 S_5 S_5 \\ S_1 S_1 S_1 S_2 S_4 S_2 S_4 S_3 S_3 S_5 S_6 \\ S_1 S_1 S_4 S_2 S_3 S_3 S_6 S_6 \\ S_1 S_3 S_3 S_6 \\ S_3 \\ \end{array} \end{array}[/math]
 
[math] \begin{array}{ccc} \begin{array}{c} S_4 \\ S_1 S_4 S_4 S_7 \\ S_1 S_1 S_2 S_4 S_4 S_3 S_7 S_7 \\ S_1 S_1 S_1 S_3 S_3 S_2 S_2 S_4 S_4 S_7 S_6 \\ S_1 S_1 S_1 S_1 S_3 S_2 S_2 S_4 S_3 S_4 S_6 S_6 \\ S_1 S_1 S_1 S_4 S_2 S_3 S_3 S_2 S_4 S_7 S_6 \\ S_1 S_1 S_3 S_4 S_2 S_4 S_7 S_7 \\ S_1 S_4 S_4 S_7 \\ S_4 \\ \end{array} & \begin{array}{c} S_5 \\ S_2 S_5 S_5 \\ S_1 S_2 S_2 S_5 \\ S_1 S_1 S_3 S_2 \\ S_1 S_1 S_3 S_3 \\ S_1 S_1 S_2 S_3 \\ S_1 S_2 S_2 S_5 \\ S_2 S_5 S_5 \\ S_5 \\ \end{array} & \begin{array}{c} S_6 \\ S_3 S_6 S_6 \\ S_1 S_3 S_3 S_6 \\ S_1 S_1 S_4 S_3 \\ S_1 S_1 S_4 S_4 \\ S_1 S_1 S_3 S_4 \\ S_1 S_3 S_3 S_6 \\ S_3 S_6 S_6 \\ S_6 \\ \end{array} & \begin{array}{c} S_7 \\ S_4 S_7 S_7 \\ S_1 S_4 S_4 S_7 \\ S_1 S_1 S_2 S_4 \\ S_1 S_1 S_2 S_2 \\ S_1 S_1 S_4 S_2 \\ S_1 S_4 S_4 S_7 \\ S_4 S_7 S_7 \\ S_7 \\ \end{array} \end{array} [/math]
Irreducible characters
All irreducible characters have height zero.
Decomposition matrix
[math]\left( \begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{array}\right)[/math]